
m

STAGNATION-POI_ SOLUTIONS FOR INVISCID,

RADIATING SHOCK LAYERS

i A thesis presented

by

W_lter B. Olstad

to

The Division of Engineering and Applied Physics

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Applied Mathematics
GPO PRICE $

CFSTI PRICE(S) $

_]r,

i

Harvard University

Cambridge, Massachusetts

Hard copy (HC)

Microfiche (MF)

ff 653 July 65

April 1966

- v w

; i1 6 ?9746
(ACCESSION NUMBER)

==

(PAGES)

; _- 7D_"/(; q¢/
(NASA CR OR TMX OR AD NUMBER)

(THRU)

I

(CATEGO RY)



ACKNOWLEDGMENT

The author wishes to express his sincere appreciation to his

research supervisor Professor Howard W. Emmons for his guidance,

criticism, and encouragement throughout the course of study. Thanks

are also due the author's employer, the National Aeronautics and

Space Administration, Langley Research Center, for their financial

support while the author was in residence and for their support of

the research and preparation of the thesis.

Grateful thanks are also extended to Mrs. Jane T. Kemper, who

programed the solutions of chapter Ill and to Mrs. Barbara M. Buchanan,

who typed the final manuscript.

Appreciation is also due the author's wife 3 Helen, for her

patience and encouragement throughout the entire period of graduate

study.



TABLEOFCONTENTS

b

ACKNOWVuEDGMENTS........................

LIST OFFIGURES........................

Chapter

I. INTRODUCTION.....................

If. STAGNATIONMODELFORA RADIATINGSHOCKlAYER .....

A. FundamentalEquations of Radiation Gas

Dynamics ...................

B. Stagnation Flo_ Model ..............

C. The Divergence of the Radiant Flux .......

D. The Inviscid ShockLayer ............

E. Thermodynamicand Optical Property

Correlations .................

III. THESMALLPERTURBATIONSOLUTION............

A. The Conventional Method .............

B. The P - L - K Method ..............

C. The Method of Matched Asymptotic Expansions . . .

D. Results and Discussion .............

IV. OPTICALLY THIN SHOCK LAYERS ..............

A. The Transparent Approximation ..........

B. The Optically Thin Approximation ........

C. The P - L - K Solution .............

D. Results and Discussion .............

Page

i

V

1

6

6

ll

34

4O

46

62

62

68

73

75

106

106

107

ll5

ll7



iii

Chapter

V. OPTICALLY THICK SHOCK LAYERS .............

A. The Optically Thich Approximation .......

B. The Substitute Kernal Approximation ......

C. Boundary Layer Analysis ............

D. The Rosseland Approximation ..........

E. Results and Discussion .............

VI. RADIATION DEPLETED SHOCK LAYERS ...........

A. The Strong Radiation Approximation .......

B. Analysis ....................

C. Results and Discussion .............

VII. RADIATING SHOCK lAYERS ................

A. Discussion of the Approximate Solutions ....

B. A Model Earth Entry Environment .........

C. Radiant Heat Transfer .............

D. Convective Heat Transfer ............

E. The Role of the Radiation Cooling Parameter

and the Bouguer Number ............

VIII. SbSa4ARY AND CONCLUSIONS ...............

IX. LIST OF REFERENCES ..................

APPENDIX A

THE VISCOUS BOUNDARY LAYER ..............

APPENDIX B

THE METHOD OF SMALL PERTURBATIONS - MATHEMATICAL

DEVELOPMENT .....................

Page

134

134

136

139

162

167

167

168

175

179

179

185

191

197

202

208

23.4

221

233



t

Chapter

APPENDIX C

OPTICALLY THIN SHOCK LAYERS - MATH_tTICAL

DEVELOPMENT ...................

APPENDIX D

SHOCK LAYER ...................

APPENDIX E

LIST OF SYMBOLS ..................

iv

Page

246

256

275

,J



LIST OF FIGURES

I

I

I

Figure

2.1.

2.2.

2.3.

2.4.

3.1.

Density correlation ..................

Temperature correlation ................

Planck mean mass absorption coefficient correlation . .

(a) Pl% l°'P

(b) P/Po 10"2

(c) p/% I0"i

(d) P/Po = I0° ...................

(e) pl% = lOl ...................

Spectral distribution of the monochromatic mass

absorption coefficient ...............

(a) T = 3,000° K,P/Po= l°°............

(b) T = e,_ ° K,_/%--lO° ............

() ooo° p/o --O.1 ...........c T = iO, K, o

(d) T = 2p,_ ° K,p/_o • • •= 0.i ........

Comparison of the P-L-K and conventional perturbation

solutions ............. .........

Effect of the parameters _ and kp on the shock

layer enthalpy distribution .............

(a) ¢ = 0.01 ....................

(b) _ = o.o3 ....................

(c) _ --O.lO ....................

Page

48

49

5o

50

51

5e

55

54

57

57

59

60

71

77

77

78

79



vi

i

p

Figure Page

3.3. Effect of the enthalpy variation of the absorption

coefficient on the shock layer enthalpy

dis t_ibuti on ..................... 80

(a) _ = o ..................... 8o

t_, kp O3 8i

(c) _l.O .................... 82

3.4. Effect of surface reflectlvity on the shock layer

enthalpy distribution ................ 89

(a) _ -- 0.1 .................... 83

(b) _ = 1.O .................... 84

(c) _- 3.0 .................... 85

3.5. Effect of ¢ and kp on the rate of radiant heat

transfer to the stagnation point ........... 89

3.6. Effect of the enthalpy variation of the absorption

coefficient on the rate of radiant heat transfer to

the stagnation point ................. 90

3-7. Effect of surface reflectivity on the rate of radiant

heat transfer to the stagnation point ........ 91

3.8. Effect of ¢ and kp on the shock standoff distance . 94

3.9. Effect of surface reflectivity on the shock standoff

distance ....................... 9_

3.10. Step function model of the mass absorption coefficient

of high temperature air ............... 97



vii

Figure

3.ll.

3.12.

4oi.

4.2.

4.3.

4.4.

4.5.

4.6.

Page

Shock layer enthalpy distribution for a nongr_y

absorption coefficient ................ 99

(a) _ = o.oi .................... 99

(b) _ : 0.I .................... I_

(c) _=i.O .................... 1oi

Rate of radiant heat transfer to the stagnation point in

a nongray gas .................... 103

Comparison of the optically thin and amall perturbation

solutions with numerical results ........... ll8

Effect of absorption on the enthalpy distribution in an

optically thin shock layer .............. 120

Effect of the enthalpy dependence of the absorption

coefficient on the enthalpy distribution in an

optically thin shock layer ............. 122

(a) Effect of 7 .................. 122

(b) Effect of h* .................. 123

Effect of surface reflectivity on the enthalpy

distribution in an optically thin shock layer .... 125

Effect of the Bouguer number on the rate of radiation

heat transfer to the stagnation point. 7 = 4.0 . . . 126

Effect of the enthalpy dependence of the absorption

coefficient on the rate of radiant heat transfer

to the stagnation point ............... 128



viii

m

Figure Page

4.7. Variation of the shock standoff distance with the

radiation cooling parameter e ............ 129

(a) Effect of _ .................. 129

(b) Effect of 7 .................. 130

4.8. Effect of Bouguer number on the optical thickness of

an optically thin shock layer ............ 131

5.1. Variation of h2 with ¢/_ .............. 145

5.2. Variation of _ 1 with ¢/_ .............. 146

_._.__ Variation of Bw_2 with _p for various values of

7 ana rw ....................... i_o

(a) _/_= O.O1,_2--0.9900............ l_O

(b) e/kp = 0.i, B2 = 0.9080 ............. 151

(c)_/_ -1.o,B2 :o._ ............. 152

(d)_/kp: J.o,B2 :o.io36............. l_

5.4. Variation of _2 with _ for various values of 7

and rw ....................... 154

(a) _/k2 :O.Oi................... i_4

(b) _/k_--O.1 ................... 1_5

(c) _/_--1.O ................... _._6

(d) _/kp--I0.................... i_7

5-5. Effect of the parameters ¢/kp and kp on the enthalpy

distribution in an optically thick shock layer .... 163

(a) _ = io ..................... 163

(b) k2 = i00 .................... 164



ix

Figure

6.1.

7.1.

7.2.

7.3.

Radiant heat flux from radiation depleted shock is_ver .

Radiating shock l_yer regimes .............

Entry trajectories in the _-_ space ........

The earth entry environment ..............

(a) Contours of constant normal shock equilibrium

temperatures .................

(b) Contours of constant normal shock equilibrium

values of the volume absorption coefficient,

Ps_p ....................
s

(c) Contours of constant values of

..............
(d) Contours of constant normal shock equilibrium

density ratios ................

7.4. Stagnation point radiant heating rate in a model entry

environment with a gray absorption coefficient.

_p = 4, rw = 0 ...................

7.5 The effect of body nose radius on the stagnation-point

radiant heating rate. W = 14.2 lam/sec, alt. =

32.4 km .......................

7.6. The effect of radiant energy transport on convective

heating .......................

7.7. The effect of body nose radius on the stagnation-point

convective heating rate. W = 14.2 km/sec, alt. =

32.4 _ .......................

Page

178

180

184

186

186

187

188

189

192

195

199

201



Q

V

CHAPTER I

INTRODUCTION

As the exploration of space progresses from the near earth

environment to the moon and the planets of the solar system, study

of the atmospheric entry of objects in excess of escape velocity

(about ll km/sec) becomes necessary. In addition to stuides con-

cerning manmade objects, there is considerable interest in the entry

of meteoroids into the earth's atmosphere at velocities from 20 to

70 _m/sec. At these large speeds radiant energy transfer is an

important factor governing the behavior of the hot shock layer gas

enveloping the object.

Consequently, a number of investigators have addressed them-

selves to the problem of the radiating shock layer. The first

analyses assumed that the flow procezses were uneffected by (or

uncoupled from) the transfer of energy by radiation (see for example

refs. 1 and 2). Thermodynamic and flow properties were calculated

neglecting radiation. The radiant energy flux was then calculated

from measured or theoretically determined optical properties for

these conditions. While this approach provides acceptable engineering

estimates at speeds less than escape velocity, it is not sufficient to

describe the effects of radiation at higher speeds. The next step was

to take into account the loss of energy from the shock layer due to

radiation. This cooling of the shock layer tends to reduce the

emergent radiant energy flux. This reduction is often termed

1
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1,

"radiation decay." Radiation decay _as studied by a number of authors

(see, for example_ refs. 3-8). All of the cited works, with the

exception of reference 8, used the transparent approximation*, which

neglects absorption within the shock layer, and assumed that the

radiation cooling of the shock layer gas was small and dld not influ-

ence the mass transport. The process of absorption by a gray** gas

was studied in reference 8. However, the flow model used in that

investigation only roughly approximates the flow in the stagnation

region of a shock layer. Consequently, the analysis was unable to

describe details of conditions in the shock layer or to provide reli-

able quantitative results.

Perhaps the most ambitious analysis to appear to date is the

work of Howe and Viegas (ref. 9). They obtained numerical solutions

to the integrodifferential system of equations governing the flow in

the stsgnation region including the effects of radiation decay,

absorption by a gray gas, vlscoslty, and surface mass injection. An

indication of the complexity of this numerical approach is the reported

computation time for a single example of _ hours on the IB_ 7090

electronic digital computer.

*So called because the shock layer gas is considered to be

transparent to its own radiation.

**A gray gas is one for which the optical properties are

independent of the photon energy or wavelength.



r

All of the works discussed above are restricted to velocities

less than about 20 km/sec, although the work of Howeand Viegas was

so restricted simply because they did not choose to makecalculations

for higher velocities. Fay, Moffatt, and Probstein (ref. i0) under-

took an analysis of meteoroid entry, in the speed range of 20 to

70 km/sec. Since they were interested only in obtaining upper bound

estimates of radiant heating, they ignored radiation decay and absorp-

tion (except that they did not allow the radiant energy flux to

exceed the black-body limit) both of which can be quite important

at these speeds.

Nhile the existing studies (which include manyworks in addition

to those cited) have contributed muchto the qualitative and quanti-

tative understanding of the physical processes taking place in

radiating shock layers, a great amountof work remains. For example,

parametric studies of absorption in a realistic shock layer flow are

lacking, the effects of surface reflectivity have been generally

ignored, and there have been no reported attempts (at least in the

knowledge of this investigator) to study shock layer gases with non-

gray optical properties.*

The investigation reported herein was undertaken to provide a

parametric study of the influence of radiation on blunt objects

large and small, travelling at speedsup to 70 km/sec. The approach

*Lick (ref. ll) and Greif (ref. 12) considered nongray optical
properties in their studies of combinedradiation and conductioa.
Their results indicated that nongray effects can be significant.
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has been to seek simple approximate solutions where available in the

hope that they would lead to a better understanding of the physical

processes involved. The parameters to be studied include the radia-

tion cooling parameter _, which characterizes the relative importance

of radiation as an energy transport mechanism compared to convection,

the Bouguer number, which indicates the importance of absorption in

radiant tramsport, the surface reflectivity, indicative of the ability

of the surface of the object to accept the incident radiant energy

flux, and the spectral variation of the absorption coefficient. (There

is no single quantity or even group of quantities which characterizes

the important effect of spectral variation on the flow. ) Definitions

of these parameters and their role in influencing the flow will be

discussed in greater detail in subsequent chapters.

In order to facilitate this investigation without sacrificing

physical significance, analysis is limited to the stagnation region

and the follo_zlng conditions are assumed to apply: (1) the shock

layer gas is in local thermodynamic and chemical equilibrium, (2) the

body geometry is axlsymmetrlc, (3) there is no mass addition to the

flow from the body surface, (h) the thicknesses of the shock and the

viscous boundary layer are small in comparison to the shock standoff

distance, and (9) absorption in the free stream ahead of the object

is negligible.

In this investigation, solutions will be obtained for four

limiting cases of the radiation cooling parameter and the Bouguer

number. The first of these, which is presented in chapter IIl, is
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a small perturbation expansion in the radiation cooling parameter ¢

valid when the influence of radiation is small. The second solution,

presented in chapter IV, holds when the shock layer is optically thin.

This solution is presented as a small perturbation expansion in the

Bouguer number. A solution valid when the shock layer is optically

thick (Bouguer number >> l) and the final solution, which is

restricted to the case when radiation is the principal mode of energy

transport within the shock layer, are presented in chapters V and VI,

respectively. The first and second solutions have been formulated to

include the effects of nongray radiation. The third and fourth

solutions are restricted to the gray case. In each of the four

limiting cases, it is possible to approximate the governing integro-

differential system of equations by a purely differential system

which leads to a singular perturbation problem.

The results obtained by means of the various approximations are

combined in chapter VII to give the radiant heat transfer rate and

an estimate of the effect of radiation on the convective heating rate

at the stagnation points of blunt objects traversing a gray model

earth atmosphere. The effects of the nongray character of air on

these results is discussed.



CHAPTERII. STAGNATIONMODELFOR

A RADIATINGSHOCKLAYER

A. Fundamental Equations of Radiation

GasDynamics

I_4 A_ J. A
• _w _u settin_ up a particular _±ow.....model for tile 9roblam at

hand, it Is desirable to examine briefly the fundamental equations

of radiation gas dynamics. An excellent discussion of these equations

has been presented by Goulard in the volume "H_gh Temperature Aspects

of Hypersonic Flow" (ref. 13), and the reader is referred to this

_rk for a more detailed exposition.

In the first chapter, it was indicated that the studies of this

paper are limited to the steady flow of gases in local thermodynamic

and chemical equilibrium. In addition, the effects of radiation

pressure and radiation energy density are ignored. These effects

are important only when the radiant energy flux is extremely large

as it is deep in the interior of a stellar atmosphere. Finally, the

presence of external forces, such as gravity and electromagnetic

forces, are neglected. With these restrictions in mind, the conser-

vation equations for a radiating gas can be written

ui ,i = O (Continuity) (2.1)*

The double subscript notation is employed.

6
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puj ui, j = P,i + Tij,j (Momentum) (2.2)

@ I ROui ht,i = " j TiJ 'j " qC,i " qi,i (Energy) (2.3)

where the quantity ht is the total specific enthalpy of the gas

1
ht=h+ u iu i (2.4)

The static specific enthalpy h includes the chemical energy of the

gas in terms of the heats of formation of the various gaseous species.

An expression relating the thermodynamic variables is needed to

complete the set of equations. A convenient form is

h - h(p,p) (2.5)

The molecular transfer processes are represented by the classical

expressions

2

Tij = _Cui,j + uj,i)+(_'- _) 8ij Uk, k (2.6)

C
ql = -keff T'i

The quantity kef f

which includes the effects of energy transport by molecular collisions

and by the diffusion of reacting species. These two processes can be

lumped together like this only when the conditions of local thermo-

dynamic and chemical equillbriumhold (see ref. 14).

(2.7)

is an effective coefficient of heat conduction
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The radiant energy flux vector

radiation intensity JR"

R
% is defined in terms of the

O@

foRqi - q_i dR, qRi - JR _i d_ (2.8)

and is the rate of flow of radiant energy per unit area across an

element of area whose normal points in the ith direction. _he

quantity _i is the direction cosine between the direction of a

single beam of intensity JR and the ith direction. JR can be

determined from the conservation equation of radiation transfer

dJh JR

where _Z is the mass extinction coefficient. It is composed of

the mass absorption coefficient _ and the mass scattering

coefficient _h

(2.9)

(2.zo)

The ratio of mass emission coefficient JR to the mass extinction

coefficient _k is often called the source function Sk = J_h"

For nonscattering media in a state of local thermodynamic

equilibrium (_R = 01 ' the source function reduces to the Planck

function
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provided that the mass absorption coefficient _ includes the

effects of induced emission. Here h and k are the Planck snd

Boltzmann constants, respectively, and c is the speed of light.

Throughout the remainder of this paper, it is assumed that the gas

in the shock layer is nonscatterlng. This assumption is reasonable

as the number of large solid particles which might scatter radiation

is expected to be negligible in the shock layer. A few such particles

might exist in the cooler regions of the boundary layer adjacent to

_he body surface as a result ^_ __ this ...._o _ .........

their presence could be accounted for, if necessary, by changing the

effective reflectivity of the body surface.

At the extremely hlgh shock layer temperatures for which the

gas is multiply ionized and free electrons are plentifully, Thomson

scattering can become important. For example, Kivel and Mayer

(ref. l_) show that scattering cannot be neglected when the tempera-

ture reaches 350,000 ° K at densities less than about 0.01 of the sea

level value.

For the nonscattering case the intensity of radiation at a

point M in the direction s follo_s from a formal integration

of equation (2.9)
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_,;here

i__ex_(-_,_)
(2.12)

TZ,MP = Jp M P_Z ds

bet_;een the points M and P. P is a "running" point on the beam

bet_,een point M and the boundary point Q.

d_(_)dr(P)- /
s

*Although the terms "optical thickness" and "optical path length,"

long established in astrophysical literature, seem to imply a dimension

of length the quantity _A,MP is dimensionless and is indicative of

the number of photon mean free path lengths in the physical distance
bet_een M and P.
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The quantity j_)t_ (Q) represents the contribution to the

intensity at point M from the boundary and, in general, includes

emission from the surface, reflection from the boundary of radiation

originating from within the region, and transmission through the

boundary of radiation originating from without the region.

The integral term represents the summationof the contributions

from all points P along the beamreduced by the attenuating factor

exp(-Th,Mp) which acounts for absorption by the intervening matter.

The divergence of the radiation flux vector can be found with

the aid of solution (2.12) with the result

_O _ Jvqi,i

exp GT_,MQI

(s) )... - _, _,,_..
dV(P)d_

(2.13)

cos e ds(Q)d_

The integrations over the volume V of the gas and the area A of

the bounding surface include only those portions of the volume and

surface which are visible to an observer stationed at point M.

B. Stagnation Flow Model

The study of three-dlmensional flow of compressible gas in the

vicinity of the forward face of a blunt body cannot be reduced via

transformation to the study of an e_uivalent one-dimensional system

as can be done in the incompressible case. However, available
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numerical solutions (see for examplerefs. l_-18) indicate that for

all practical purposes a reduction from a three-dlmensional to a

nearly e_ulvalent one-dlmensional problem can be carried out in the

stagnation region. The reason that this simp."olfication can be

applied is that the flow behind a strong bow shock is nearly incom-

pressible in the stagnation region. Also the various thermodynamic

properties are nearly independent of the lateral or radial coordinate.

While the samearguments apply in the stagnation region of a

radiating shock layer, it is not possible to postulate the exlstance

(even approximately) of a one-dlmensional solution solely on this

basis. Someadditional assumption is required regarding the effect

of the far-field on the radiant heat flux and its divergence. This

effect, of course, cannot be obtained a priori as it depends on the

solution to the entire flow field. Fortunately, the shock layer is

thin and only a small portion of the radiant energy emitted by gas

removedfrom the stagnation region actually passes through the

stagnation region. If absorption is small, only a small portion of

this is absorbed in the stagnation region. If, on the other hand,

absorption is large, the beamis greatly attenuated whenit reaches

the stagnation region leaving only a small portion of the energy

which started the journey to be absorbed in the stagnation region.

The divergence of the radiant flux is influenced only by the amount

of energy absorbed and emitted. Consequently, the far-field effect

on the divergence of the radiant flux is a result of that small
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portion of radiant energy originating in the far-field and absorbed

in the stagnation region. In the transparent and optically thick

limits, this effect of the far field vanishes.

It would appear from the above discussion that a stagnation

model for a radiating gas can be postulated as long as the assumptions

concerning the far-field are not grossly unrealistic. In what follows,

a particular stagnation model will be formulated and an estimate of

the inaccuracy resulting from the assumption concerning the far field

will be obtained.

A schematic of the flow in the stagnation region of a blunt

body is shown below

W

R
S

UW r

Z
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At very high speeds, the ratio of the shock standoff distance & to

the shock radius R is very much smaller than one (a typical value
s

is 0.05). Under these conditions, the geometry of the stagnation

region closely resembles a plane parallel gas slab. In addition,

the enthalpy in the shock layer varies slowly with respect to r/&

so that the stagnation region may be approximately represented by

a gas slab in which the thermodynamics as well as the geometry is

one-dimensional.

As a result of the above considerations, the model described

below has been chosen to represent the flow of a radiating gas in

the stagnation region of a blunt object. The model consists of an

axially symmetric flow impinging upon an infinite flat plate normal

to the stream direction. At a plane which is parallel to the plate

and a distance _ in front of it, the gas is suddenly raised to a

total specific enthalpy of _ . The plate is held at a constant

temperature T • A sketch illustrating the geometry of the flow
w

model is shown below.

Z

W W

/

/

I Axis of

i symmetry

/

Shock Body
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The general equations of motion (eqs. (2.1) and (2.3)) when

specialized to the asisymmetric geometry become

,=)+ _(p_,r)- o

bu bu 3p rrBT 3T
pu _- + pw r-- = - _-- +-w--- + zr +

ar oz or or az

Trr - Tee

r

_w 3w 3p 8Tzz bT Trz rz

_u _+ _ _z" -_z + %7z + %V-r+ --r

pu _ + pw _ _r r _ + _-r UVrr rz

• -Cu,.,, +,,z)r rr rz rz z

(2.14)

(2.15)

(2.16)

(2.17)

where qr and qz are the r- and z-components, respectively, of

the heat flux vector which includes, conduction, diffusion of reacting

species, and radiation. The stress components are given by the

expressions

Trr = 21_ _rr + " 3" tJ'.,,/_.Sr 8z
(2.18)

3w 2 3w

Vzz = 2_ _'z + ' " -3 Jkar + 8z--+ (2.19)

'ee = 2_ r + " 3 + _ + (2.20)

Tzr = _ + (2.21)
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The equation of state is

h - h(p,p) (2.22)

In order to completely specify the problem, a consistent set

of boundary conditions must be provided. The kinematical conditions

on the velocity are

_(r,o)= 0 (2.23)

p(r_)w(r%) = -p W

The first of these conditions restricts the analysis to one

for _ich there is no injection from the surface of the object.

(2.24)

When

gas injection is important, it is necessary to replace the zero on

the right-hand side of equation (2.23) with w, the normal velocity
w

of the gas at the wall. The second condition was obtained from

continuity across the normal shock at the stagnation point. A third

kinematical condition is introduced here in order to relate the

standoff distance A to the variation of the tangential velocity

along the surface z = _. This variation in velocity is taken to be

equal to that behind the near normal portion of a spherical shock,

that is

u(rm) = w cos _w _ (2.25)

where

stremudlrection and R
S

is the local inclination of the shock from the free

is the radius of the spherical shock.
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The dynamical "no-slip" condition at the surface is

u(r,o) = o (2.26)

The conditions on the enthalpy and pressure are

ht (r,A) = _

ht (r,O) = h w

(2.27)

(2.28)

P(r,&) = P_ (i - ×) Ii - I_s)21 (2.29)

where × = p_/ p(O_) is the density ratio across the normal shock.

Condition (2.27) comes from the conservation of ener_ across a strong

normal shock and does not take into account absorption in the free

stream of radiant energy emitted by the shock layer. Condition (2.28)

restricts the analysis to those conditions at which a temperature

"Jump" or discontinuity is not present at the body surface. Such a

"Jump" can occur only when the molecular mean free path in the gas

is not negligible in comparison to the characteristic length of the

domain (in this case, the thickness of the thermal boundary layer).

Condition (2.29) is the pressure distribution behind the near normal

portion of a spherlhal shock of radius R .
s

In addition to the boundary conditions listed above, boundary

conditions on the radiant energy flux must be specified. These

conditions are:
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(i) The boundary at z = & (which corresponds to a bow

shock) is transparent.

(2) There is no radiant energy transfer from the free stream

to the shock layer.

(3) The boundary at z = 0 (which corresponds to the body

surface) is cold and reflects diffusely and independently of wave-

length a fraction r of the incident radiation.
W

The statement (contained in condition (3)) that the body surface

is cold means that emission from the body surface has a negligible

influence on the gas in the shock layer. _hen the hot (temperatures

in excess of 10,000 ° K) shock layer is optically thin emission from

the relatively cool (temperatures less than _,000 o K) body surface

may be comparable to emission from the shock layer gas. However,

because the shock layer is optically thin very little of the radiant

energy emitted at the body surface will be absorbed by the shock

layer gas. On the other hand, when absorption in the shock layer

is important the shock layer gas emission will approach the black-

body value corresponding to the high shock layer temperature. Since

black-body radiation is proportional to the fourth power of temperature

the gas emission from an optically thick layer will greatly exceed

the emission from the body surface. Thus whenever the body surface

temperatures are small compared to the shock layer gas temperatures

the influence of emission from the body surface on the shock layer gas

is unimportant.
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Prior to assuming that the shock layer is one-dimensional it

is necessary to specify whether the body surface reflects diffusely,

specularly, or in some combination of the two. However, in a one-

dimensional system this specification is superfluous because the

difference in effect of the two types of reflectivity vanishes.

Since the surface reflectivity of most solid materials at high

temperatures varies little with the wavelength, the assumption that

the surface reflectivity is independent of wavelength provides a

simplification in the analysis without sacrificing physical

significance.

It can be seen from the definition of the total enthalpy

ht = h + l(u2 + w2)

and the boundary conditions (2.24) and (2.27) that the magnitude of

the kinetic energy in the shock layer is order X2 compared with

the static specific enthalpy. For a strong shock, which is the only

case of interest here, 0.05 is a typical value for X, the density

ratio across the shock. As a consequence of the above the kinetic

energy terms wlll be neglected in the subsequent analysis. The

viscous dissipation terms (the last three terms on the right-hand

side of equation (2.17)) will also be neglected because only kinetic

energy is dissipated through the action of the viscous forces.

It is desired that the solutions to the one-dlmensional model

represent, as closely as possible, the phenomena in the stagnation
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region of a blunt body. For simplicity, the blunt body geometry,

flow field, and thermodynamic properties are considered to be

axially symmetric about the stagnation streamline. Expanding the

solutions for the real blunt body problem in terms of the radial

coordinate r and arguing on physical grounds that w(r,z), p(r,z),

p(r,z), and h(r,z)

odd, gives

are even functions of r while u(r,z) is

,., _(o) _,_ _ o(2

u = _(1) (z)+ 0(r_)

P = p(O)(z) + O(r 2)

P = p(O) (z) + O(r 2)

h = h (0) (Z) + O(r 2)

(2.30)

In addition, the heat flux components will have the form

qz = %(0) (_) + o(r 2)

qr = r41) (z) + O(r 3)

2
Neglecting terms of order r and higher restricts the solutions

to the vicinity of the stagnation point. Since stagnation region

solutions are desired, it will be assumed that the solutions in the

plane parallel model have the functional forms of equations (2.30)

and (2.31) truncated after the linear term in r. For these assumed

(2.31)
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forms, the continuity equation (2.1h) requires

(2.32)

That portion of the heat flux due to conduction and diffusion

of reaction species is proportional to the enthalpy gradient, that is

c~dh c dh
qz d'Y' _ "" d_

From conservation of energy across the near normal portion of a strong

spherical shock

h_ -_-

Thus

qz ~_ ' % ~

Comparing terms that appear in the energy equation one finds that

+ ~ _ <<l

C

Thus, the terms containing qr can be neglected in the formulation

of the stagnation flow model.

If the shock layer is optically thick, that is the photon mean

free path is very small compared to the shock standoff distance, the

radiation flux terms take on the same form as the conduction
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terms and 8 8r + r may be neglected. On the other hand,

if the gas is not optically thick, this simple order of magnitude

analysis no longer suffices because the divergence of the radiant

energy flux depends not only on local conditions, but on conditions

throughout all of the shock heated gas which can be seen by an

observer located at the point in question.

Calculations were made of the divergence of the radiant flux

for a gray isothermal gas in a shock layer formed by two concentric

spherical surfaces with a standoff distance to shock radius ratio

of 0.0_. A sketch showing the volume of gas which contributes to

the radiant flux at a point on the stagnation streamline is shown

below.

/ ConPlane-parallel I trlbuting volume for

m°del_° _nclntric spherem°d°l!_v

f_J _

A,
/'1

¢

.K-

According to the Rosseland or diffusion approximation.
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The largest difference between this result and the divergence

of the radiant flux for a plane-parallel layer occurred adjacent to

the wall for an optical thickness of about O.13. The difference

amounted to 2.2 percent of the value for the plane-parallel layer.

A second set of calculations was made to determine the effect

of a nonuniform enthalpy distribution, in the lateral direction,

on the magnitude of the divergence of the radiant flux. The enthalpy

distribution was given by

(o)L1 - 2"_ssJ IAI J' f°r r <- _/_Rs

h(r) =
O, for r > _/2R s

This expression approximately corresponds to the enthalpy distribu-

tion in the shock layer about a spherical body. The absorption

coefficient was assumed to vary as the third power of the enthalpy

!

and the shock standoff distance to shock radius ratio, A/Rs, was

chosen to be 0.05. A comparison of calculations for a plane-parallel

layer in which the enthalpy was assumed to vary according to

equation (2.33) and of calculations for a plane-parallel layer in

which the lateral enthalpy distribution was uniform (i.e., h(r) = h(O))

indicated that the largest difference in the magnitude of the

This variation is consistent with the correlations of the optical

properties of air to be discussed in a subsequent section of this

chapter.
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divergence of the radiant flux occurred for a shock layer optical

thickness of about O.1. This difference amounted to 2.8 percent of

the value for the uniform distribution. These results are inde-

pendent of the value of h(0).

Since the errors in the divergence of the radiation flux for

the one-dimensional shock layer due to the separate effects of

geometry and nonuniform lateral distribution of enthalpyare small,

their combined effect should be given approximately by the sum of

the separate effects. That is, the maximum error due to the combined

effects of geometry and nonuniform lateral distribution is probably

not much greater than _ percent for _/R s = 0.0_. This, of course,

does not imply that the final results for the enthalpy (for example)

would be in error by _ percent but only that one term in the energy

equation is in error by _ percent. In any event, the results of the

calculations mentioned above are considered to give sufficient

justification for choosing the plane-parallellayer as a model for

the stagnation region of a blunt body.

The e_ression for the radiant energy flux is more seriously

affected by the plane-parallel layer assumption than is the divergence.

For example, Koh (ref. 19) has computed the radiant flux at the wall

for an isothermal shock layer formed by two concentric spheres. For

a shock standoff distance to body nose radius ratio of 0.0_ and a

vanishingly small value of optical thickness the result is about

17 percent less than for a plane-parallel isotherma_i layer of equal
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optical thickness. This difference decreases with increasing optical

thickness. Koh also computed the effect of nonuniform lateral en-

thalpy distribution using an assumed enthalpy distribution similar

to that given by equation (2.33). He found that the flux at the

wall for the nonuniform distribution was about 1._ percent less than

that for an isotherHml layer for a shock standoff distance to shock

radius ratio &/R s = 0.0_ and a vanishingly small optical thickness.

As expected, the difference decreases as the optical thickness

increases.

It is apparent from Koh's results, that an accurate estimate

to the rate of radiant heat transfer to the stagnation point cannot

be obtained through the use of the plane-parallel layer approximation

unless some correction factor, which takes into account the actual

geometry of the shock layer, is employed. However, because this

investigation is concerned with obtaining a general understanding

of the problem of radiating shock layers rather than specific numerical

results, such a correction factor will not be used herein.

At this point, it is convenient to introduce the variable

transformation

_O z
= 0dz

The nev variable _ is often called the Dorodnitsyn variable.

Under this transformation, the normal and tangential velocity

components become

(2.34)



26

(2._5a)

u = rf'(q) (2.3_b)

The t_Jo _omcntum equations (eqs. (2.1_) and (2.16))take the fol_n

and

!

f"('l)_ + 2f(_)f"(_) -_,'(n)_ 2 1 8p
- pr_

pr,f"(,i) - _ '(_) - E r_'(_) f(,1

, 2 l 2f ('q) f'+ _ - _ _ _'(,1) f(,1 - (,l)

2

P'(q) _ = + _- PP'(h)

(2.36)

(2.37)

An order of magnitude analysis of e_uation (2.37) indicates

that p'(]) is order X or Re "l, _,_hichever is larger. Since both

X and Re "l are very small compared to unity e_uation (2.37) }Till

be replaced by the simple approximate expression

p'(rl) : 0 (2.._8)

Thus, the pressure is a function of r only. In particular, the

strong shock relations for the near normal portion of a spherical

shoch give

p(r) = p W 2 (i-X_I- _s)2_+ OCt _)
(2.39)
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To first-order in r

1 8p 2 1

r_._.= -2pooW (l -X) _.
8

so that equation (2.56) becomes

2p_ W 2 (1 - X)

2
pR

S

(2.40)

Under the foregoing assumptions and the coordinate transformation_

the energy equation (eq. (2.17)) becomes

-2f(u) h'(u) + q'(U) = 0 (2.4z)

_]e boundary conditions are

_(o) = o (2._2)

f'(o) : o (2._,3)

qAl i W

W

_(o) :h
XT

(2._6)

_) 1%2h =_- (2.L7)
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where

(2.40)

The heat flux term q(q) in the energy equation (2.hl) is

composed of a combined conduction and diffusion term

c(n) = -pk_,(_)= - _h'(_)

and a radiation term

(2.49)

C r'%
qR(q) = "2_ _0 Bk (tA)E2),- T_)dt h

r T?\

" Jo BT' (tk)E2 (Th- t_)dtk
(2.>o)

(TOJo

This radiation term is representative of the case of a plane-parallel

geometry with a transparent wall (shock) and a cold wall, which

reflects diffusely and independently of wavelength a fraction r of
w

the incident radiation, separated by a nonscattering, nongray gas.

The variable Tk is cslled the "optical path length" and is defined

by the expression
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So

E_ression (2._0) was specialized from the more general expression

of Goulard (ref. 1). Goulard derived the e_qoresslon for the radiant

flux in a plane parallel geometry with arbitrary reflecting, absorbing,

and emitting walls separated by a nonscattering, nongray gas. His

expression was restricted to isotropically emitting and diffusely

restriction is of little consequence In thls problem because emission

from the wall will be neglected (the wall is cold) and there is no

difference in effect between specular and diffuse reflection in the

one-dimensional case,

The first term in equation (2.50) represents the radiant energy

flux passing through the plane Tk = const, and which originated in

the region between this plane and the shock at _ = Th&" This

radiant flux has been attenuated by partial absorption in the inter-

vening gas. The second term represents the radiant energy flux

passing through the plane _ = const, and which originated in the

region between this plane and the wall at _ = O. This flux has

also been attenuated by partial absorption in the intervening gas.

The last term represents the radiant flux passing through the plane

Th = const, and which was reflected from the wall and attenuated

by the intervening absorbing gas.
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Substituting the expressions for the energy flux equations (2.49)

and (2.50) into the energy euation (2.41) gives

where the divergence of the radiant flux is represented by the

(2.52)

integral term

{So" -I' ,1+ 2_Jo _xCn) r_(n') Bx(n') "l l'x (n) " "x (n) an'

+_r,"._C,_(,>)E_,(,'>,,(,',_._(.,(,'>)_,},_
The final step in the derivation is to reduce the e_uation to

nondimensional form. For this purpose, the following set of non-

dimensional quantities is introduced

(2-53)

-z [_ 3(F)p = p

4
oT

2

B_(_) _ L,
(2.5_.)
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Pr
S

_S C
PS Poo W_ AA

= , Pe = Pr Re
ks ' Res _s s s s

h
_aT

r _ s

p W s

(_.54)

The subscripts = and s indicate conditions evaluated in the

undisturbed free stream and immediately behind the shock, respec-

tively. The quantity _A is the shock standoff distsnce for

the nonradiating (or adiabatic) shock layer. The property variations

represented by _i' _2' and _3 are functions of h only as

the gas is in local thermodynamic and chemical equilibrium and the

pressure has been assumed constant throughout the stagnation region.

The quantities Prs, Res, and Pes are the Prandtl, Reynolds, and

Peclet numbers, respectively, based on conditions immediately behind

the shock. The parameters F, _, and ¢ are the inverse of the

Boltzmann number, the Bouguer number, and the radiation cooling

parameter, respectively. These parameters are fundamental to the

study of radiation gas dynamics and have been discussed by a number

of investigators (see, for example, refs. 21 and 22).

Substituting the above listed nondimenslonal quantities into

equations (2.hO), (2.42) through (2.47), (2._2), and (2._3) yields

the nondimensional system governing the flo_ in the stagnation

region of a blunt body traveling at hypersonic speeds.
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s l(_)5(_ + cY = o

2R_l_ 2(5) f"(q +2g(Dg"(D - (,_ e+ :_5(g)=o

(2.55)

(2.36)

_(0) = 0 (2.57)

f"(O) = 0 (2.58)

a
(2.60)

_(o)= _, = g h_, (2.61)

_ l (2.62)

where _A is the value of the nondimensional Dorodnitsyn variable

at the shock. This quantity is determined from the expression

m

[_A %(_)e_ (2.63)

The integral term Y[_3 is given by the expression.
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d_

In two chapters (V and VI) of this paper, it will be convenient

to e_ress the energy e uation in terms of the optical path length as

independent variable. In both cases the optical properties of the gas

_Till be assumed to be independent of wavelength. In this event, the

energy equation (less the thermal conductivity term) becomes

(2.65)

where

+

+ 2rw E2(k P 7) JPO"A

(2.66)
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Throughout the remainder of this paper, the bars over the non-

dimensional variables will be dropped. This should not lead to any

confusion because only the nondlmenslonal form of the governing

equations will be employed.

C. The Divergence of the Radiant Flux

The nondimensional form of the divergence of the radiant flux

is

The first term on the right-hand-side of this expression is the local

emission term _.zhichrepresents the rate at which energy is emitted per

unit volume of gas at the location _. The integration over all _ave-

lengths _ has been performed for this term with the aid of the

definition of the Planck mean mass absorption coefficient (see below).

The second and third terms represent the rate st which radiant energy

is absorbed per unit volume at the location _.

It is the presence of the second and third terms which so greatly

complicate the radiation problem. These terms are integral expressions.

In addition, their presence makes it impossible to define a ,_avelength
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averaged absorption coefficient by which the wavelength dependence

might be eliminated. The importance of these terms is indicated by

the magnitude of the Bouguer number kp which is the ratio of the

shock standoff distance for a nonradiating shock layer to the photon

mean free path evaluated at conditions immediately behind the shock.

The radiation cooling parameter _ is a ratio of the rate of

energy loss per unit area by radiation from both sides of a non-

absorbin_ isothermal 1_y_ _f g_ _ +_ .... A to _^................................ A _ rate at

which kinetic energy enters the shock layer per unit area of shock

surface. Alternatively, the parameter ¢ may be interpreted as the

ratio of the radiationless standoff distance to the decay length where

the decay length is the length required by an element of gas to lose

all the energy it possessed upon emerging from the normal shock if

it loses this energy by radiating (without reabsorbing) at a con-

stant rate. This parameter modifies the entire radiation term and

thus, acts as a measure of the relative efficiency of radiation

compared to convection as energy transport mechanisms within the

shock layer." In addition, the surface reflectivity r and the
w

wavelength dependence of the absorption coefficient influence the

character of the radiation terms and will be considered as parameters

in this study.

Most investigators who have studied problems in which a term

similar to l[q_ appears have assumed that the gas and its sur-

roundings are gray, that is the optical properties are independent
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of wavelength. This allo_s the integration over frequency to be

performed analytically. Accurate results can be achieved in the

two extreme cases 9f optically thin IrA << l) and optically thick
k

(VA >> l) gases. When the gas is optically thin at all wavelengths,

the gray absorption coefficient is correctly given by the Planck

mean mass absorption coefficient

C
Where _k is the monochromatic mass absorption coefficient and

the weighting function Bk is the Planck black-body function.

When the gas is optically thick at all wavelengths, the gray absorp-

tion coefficient_ in the interior of the gas, is correctly given

by the Rosseland mean mass absorption coefficient

(2.69)

Near a radiation boundary or in regions of rapid (with respect to

the optical path length) variations in thermodynamic properties the

Rosseland mean is not valid. At intermediate values of optical depth,

no single mean absorption coefficient, which depends only on local

thermodynamic conditions can be defined. In fact, as has been pointed

out by Krook (ref. 25) it would be necessary to define an infinite

number of such mean coefficients. This, of course, does not preclude

the possibility of defining approximate mean coefficients under

these conditions.
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Stone (ref. 2_) introduced a model in which the monochromatic

absorption coefficient was a step function of frequency with the size

of the steps independent of the geometry or thermodynamics of the

system. By means of this method, the integral over all wavelengths

is reduced to a finite series. Carrier and Averrett (ref. 2_) con-

sidered an absorption coefficient with only two steps, one of which

was very much larger than the other. Both of the papers noted above

were concerned with Milne's problem of a stellar atmosphere in

radiative equilibrium. Lick (ref. ll) and later Grief (ref. 12)

studied the problem of one-dlmensional energy transfer between two

walls separated by a radiating and conducting gas. A picket fence

model, which is a specialization of the step function model, for the

absorption coefficient was used. Krook (ref. 26) derived expressions

by means of the P-L-Kperturbatlon procedure for a slightly nongray

gas. The solution represents a perturbation to the gray gas solution.

Rhyming (ref. 27) considered wave propagation in a simple dissociating

flow of a radiating gas where the absorption coefficient was given as

a Gaussian function of the frequency.

However, even with the above simple models for the absorption

coefficient, the term IE_ _ retains an integral character and the

solution to the set of e_uation is still very difficult to obtain.

Numerical procedures are extremely tedious. For example, it was

pointed out in reference 9 that the time to obtain solutions on the

IBM 7090 to a similar (though not idential) set of equations with the
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gray gas assumption ranged from 20 minutes to _ hours. As a result

of this difficulty, several approximate analytical methods have been

derived in order to reduce this term to purely differential form.

One such technique is the Milne-Eddington approximation (ref. 28),

the derivation of which has been based on physical considerations,

but which may also be thought of as a substitute kernal approximation

(ref. 29). The integral terms can then be eliminated by means of a

double differentiation (for a gray gas only). Of course, this

increases the order of the differential equation by two. This

technique has been used by a number of authors in the study of the

dynamics of radiating gases (see for example, refs. 30 and 31).*

Barbier (ref. 28) introduced the method of expanding the source

function in a Taylor series about the zero of the argument of the

e_onential integral kernal, _Th(q) - _(q')). Because the kernal

function has a logarithmic singularity at the zero of its argument,

the integral over the first fe_terms of the series should provide a

good approximation. The resulting integrals can then be evaluated

analytically and the equation becomes purely differential in character.

Yoshikawa and Chapman (ref. 8), Thomas (ref. 55), and Viskanta (ref. 34)

all used the method of Barbler to different degrees of approximation.

Traugott (ref. 32) has introduced a '_ethod of moments" in order

to reduce the integral term to differential form. This method may be

taken to any degree of approximation desired (not without a considerable

sacrifice in simplicity however). The first approximation is identical

to the Milne-Eddington approximation. Traugott's higher approximations

can also be obtained by a substitute kernalmethod similar to that of

Krook (ref. 29).
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When more than the constant term in the Taylor series is retained,

it may become necessary to introduce additional boundary conditions.

In fact, it rm_y not be enough to merely specify a new condition, it

may be necessary to modify the existing conditions as well so that

in the limit as the oarameter N = k_/4_T_ (for example) tends to

zero, the solution will approach the proper pure radiation solution.*

Apparently, this point was overlooked by Viskanta. In his paper,

Viskanta blamed the failure of his pure radiation solutions for a

finite optical thickness to exhibit a temperature jump at the _ll

on a premature truncation of the Taylor series expansion of the source

f[uuction B(T). Actually, this failure was a result of improperly

specifying the boundary conditions.

The diffusion approximation for optical].y thick gases has been

used extensively in astrophysics and gas dynamics. Probstein

(ref. 35) has shown how to extend the usefulness of this approxi-

mation to gas layers of finite optical thickness by means of radiation

slip boundary conditions. It is not at all clear, however, that these

slip conditions can be used in the problem of this paper because of

the presence of the convection term owdh/dz.

*This parameter, which appears in the literature concerning

energy transport by radiation and conduction, represents the re]ative

importance of conduction compared to radiation. When N tends to

zero radiation is the dominant mode of energy transport.
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The optically thin approximation of hot gases, in which absorp-

tion is neglected in comparison to emission has also been used exten-

sively in gas dynamics. As Thomas(ref. 33) has pointed out, this

approximation is not valid in those portions of the gas which are

considerably cooler than the remainder of the gas.

In this paper, the integral term IL_ will be reduced to alge-

braic or differential form through the use of various approximations

similar to those described above. The manner in which this is to be

accomplished _ill dependon the order of magnitude of the parameters

c and kp and _ill be discussed in detail in the next four chapters.

_._leneverpossible, the gas will be treated as nongray.

D. The Inviscld Shock Layer

As was pointed out in chapter I, the studies of this paper will

be concerned only with _hose cases for _hich the thicknesses of the

wall boundary layers due to the presence of viscosity and thermal

conductivity are very muchless than the shock standoff distance. For

a nonradiating gas, the shock layer can be separated into an outer

inviscid and non,eat conducting region and an inner viscous and heat

conducting region or boundary layer. Considerable simplication will

result if a similar separation can be achieved in the case of a

radiating gas. As will be sho_n, such a separation can be obtained

when the boundary is either optically thin or optically thick. Only

the foi_er situation will be considered herein. The method of



41

separation follows the procedures delineated by Van Dyke (ref. 36).

Mathematical details are presented in appendix A.

It is shownin the appendix that the significant parameter which

determines the e_ent of the boundary layer is the inverse square root

of the P_clet nmnber_Pe"1/2. The zero-order in Pe"1/2 system of

equations which governs the flow in the inviscid region is

(2.7o)

,, [-fo _ P 2 ::::}3(h2:ro(,l) fo(_l) - (n -+,__ .. ) _o (2.7l)

_'o(O) -_ o (2.y2)

fo(q& 1 = 1

2f_A _ a

(2.73)

(2.7J)

h (hA) =lo (2.79)

The dependent variables fo(_) and ho(q) are the as_nptotic values

of f(_), the nondimensional stream function, and h(_), the non-

dimensional enthelpy, respectively as Pe -1/2 approaches zero.
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In the bomldary layer, the zero-order system of equations is

qm

(io)_o(_ij'÷go(_)io(_)+ _Jo_--o
(2.76)

+ 2}_li_l''.,,.= 0

(2.77)

go(O) = 0 (2.78)

go(O) = 0 (2.79)

li_ go(_)= f,(O)o (2._o)

(2._i)lim io(O) = h w

io(_)= ho(O) (2.82)

The independent variable g is the "stretched" boundary layer coor-

dinate defined by the relation

=pe 1/2

The dependent variables g(_) and i(_)

i(_) = h(q)

_'(_) = f'Cn)
in the boundary layer as Pe -I/2 spproaches zero.

(2.83)

are defined by the expressions

(2.s_)

(2.s_)
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_le integrals _hich appear in the second of these expressions are

definite integrals. Consequently, the system of equations governing

the flow in the boundary layer is a purely differential system.

It must be realized that expressions _._oj and (2.87) are

restricted to the case of an optically thin boundary layer. It is

only in this case, and the case for which the boundary layer is

optically thick, that a complete separation between the inviscld

region and the boundary layer can be _chieved. At intermediate

values of optical depth, the integral term Io_ _ is a function

of the enthalpy distribution in the boundary layer in addition to

being a function of the enthalpy distribution in the inviscid region

so that the equations in the inviscid region and the boundary layer

are coupled. The influence on the inviscid region of radiation from

an optically thick boundary layer cannot be neglected. Ho_ever, most

of this radiation originates at the o_ter edge of the _uo_aaiy _aj_r.

The boundary layer solution in this region is constrained by matching

conditions to approach asymptotically the value of the inviscid

solution at the wall. Hence, the radiation contribution to the

inviscid region from the boundary layer can be obtained from the

inviscid solution at the wall, leaving the inviscid solution uncoupled

from the boundary layer solution.

This restriction to an optically thin boundary layer is not so

severe as it might first appear. This is because the optical thick-

ness of a boundary layer in _;hich the absorption coefficient is the
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sane order of magnitude as it is for shock heated air will not exceed

about O.1 at any altitude and velocity (up to km/sec) for a shock

radius of 1 meter or less. In fact, the optical thickness of the

boundary layer _4ill be less than0.1 at that point of the trajectory

of a Martian or Lunar return vehicle with a shock radius of about

1 meter for _ich heatiD_ is a n_axlmum even if the absorption coeffi-

cient in the boundary layer is 100 times that of shock heated air.

That this should be the case is not so difficult to see when it is

realized that both the optical path length and the boundary layer

thickness decrease rapidly with decreasing altitude. Thus, at low

altitudes where the optica] path length is small and the shock layer

may be optically thick, the bounds_r layer thickness is very small.

For larger objects, the boundary layer need not be optically thin at

the lower altitudes because the boundary layer thickness depends on

the size of _e object _hile the optical path length does not.

These conclusions regarding the optical thickness of the boundary

layer generally concur _ith the obseI_ations of Fay, Moffatt, and

Probstein (ref. lO). Henceforth, the discussions of this paper will

be limited to the case of an optically thin boundary layer and

radiation from _is boundary layer will be considered to have no effect

on the solution in the inviscid region of the shock layer.

If the inviscid system of equations (2.70) through (2.75) is

solved for the nonradiating case (¢ = O) along with condition (2.63)

one finds that the ratio of the shock standoff distance to the shock

radius is given by the expression
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AA X

R 1 ÷ V_(1 -×)

Hayes (ref. 57) obtained the same result when the shock and body

surfaces near the stagnation point are concentric spheres. When

the shock and bodv surfaces are not concentric (i.e._ R _ _. + _)
v " S' _ "

condition (2.68) is still approximately true over a wide range of

body shapes (see, for example, refs. 38 and 39). With this result

(2._33)

2 V2x(1-×a - ., (2,_9)

i + V2×(I-×)

This value for a, the constant appearing in the momentum equa-

tion (2.71), will be used throughout the remainder of this

investigation.

E. Thermodynamic and Optical Property

Correlations

In order to achieve meaningful results, an attempt has been

made in this paper to use simple yet physically reasonable approxi-

mations to the thermodynamic and optical properties of high tempera-

ture gases. In particular, coorelation formulas were derived from

the existing store of information about equilibrium air. The thermlo-

dynamic properties were obtained from reference h0, for temperature

up to lO0,000 ° K and pressures from l0 "3 to l02 times atmospheric.

The optical properties were obtained from a variety of sources which

will be noted later.
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It was noted from the data of reference h0, that both the density

and temperature could be approximately represented by functions

separable in the variables pressure and enthalpy. More specifically

in the form _P/po)n f_h/RTo) " Plots of the functions f(h/RTo) for

the density and temperature at various pressure levels are presented

in figures 2.1 and 2.2, respectively. It is apparent from these plots

thab the density and temperature can adequately be represented by the

expressions

fp @.96 -1
(2.90)

°k (2.9l)

A number of investigators (see, for example, refs. &l-&5) have

calculated the radiant properties of equilibrium air for temperatures

up to 25,000 ° K and for densities from lO "6 to lO 1 Amagats. Because

of the extremely complex nature of these calculations, the many

physical processes which produce radiation, and the uncertain knowl-

edge of cross sections and transition probabilities the scatter among

the various calculations is often quite large. Some of the results

for the Planck mean mass absorption coefficients are presented in

figure 2.).

A correlation formula can be obtained from figure 2.3 by

approximating the curves of LOgl0 p_ versus LOgloT with straight



48

%
,---I

4

41.-

0 [] <: q ." (I

J
S

j/

/
/I

Lg-
<>

m_

0

n£

CD

0
£1,

@
II

o

G_

o
B

0
...--I

,--I

o
¢...)

°r'l

!

°r-t



49

I

t,.-

j

!

law

%

°_

o tn 0<1A _1 o 0

_4

g

0
.r'l

H

_M

0
o

®

!

o5

%



-I

-2

-3

-4

-o

-7

-8

O

B

A

B

8

o

FI
o

O

A

[]

[]
o

m<>

O

_B
[]
B
[]

_B

<><> []

(9 K[vel and Bailey(rel.Sl)
[] Nardone etal. (ref.35)
<> Sewell (ref. 34)

A Gilmore (ref. 32)

I_ Armstrong et al. (ref. 33)

--_ I i I I i ( i I i i

i0 J ]/,, t 10 5

,)

T, E

,b (a.) P/Po = 10-3"

Figure 2.3.- Planek mean mass absorption coefficient correlation.



91

-I

[,ogt( ' dKp_ tin

-g

-4

-b

- 6

iO s

A

2

D[3m o

D

u<>

<>

[]

'1

'].' oK

I I

i0 B

(b) P/Oo= :0-2"

Figure 2.3.- Continued.

I
J

I
i

i



I
J
I

7

-!
l_ogio 0Kp_ crn

1L0

-3

-4

i0

0

E]

0

<>

0

171
<>

0

<><>

<>

0
<>

m
m

A
L _.--L

i0 _

'[', OK

i0 -I"
(c) P/Po :

Figure 2.3.- Continued

_2

L

10 5



53

-i
Loglo pKp, cm

-2

-3

-4

..5
10 3

O

O

A

<>

I

i0_

T, OK

<>

<>
6)

<>

<>

<>

105

.A

(d) P/_o= 1°°"

Figure 2.3.- Continued.



5_

.kl

-i
l'°Ji(lfogl, <;n_

,)

-i

'7

-u

-I

o O

0

0

0

o <)

0

<>
o

©
o

A
©

$

[]

T, oll

(e) P/Po = I01

Figure 2.3.- Concluded.

Ix.

t I

10b



55

lines. The resulting formula is

(2.92)

of this paper. It is much more desirable to express the Planck mean

mass absorption coefficient _ in terms of the pressure and enthalpy.

This was done by cross-plotting the logaritlnn of the absorption

coefficient data sho_m in figure 2._3 _l,,_--_"...._ the logatithm of *'-_ne

temperature at constant pressure. Straight lines were then fitted

to the resulting curves. Finally, the correlation formulas (2.90) and

(2.91) for density and temperature were used to obtain the formula

lr_f'n _'O" 54"O" 44L°g_r_P_ IR__o )3 "D5 "O "24L°glO_ cm2/g m

(2.93)

This formula is valid for temperatures up to 20,000 ° K at the higher

pressures _p/po = lO "l to l0 l) and to somewhat lower temperatures

at the lower pressures (for example, when __P/Po = 10"3 the maximum

temperature at which the_ formula is valid is 15,000 ° K1 .
g

In addition to the Planck mean, it is necessary to know the

spectral variation of the mass absorption coefficient. Results of
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some typical calculations of the monochromatic mass absorption

coefficient plotted as functions of wavelength for constant tempera-

ture and pressure are presented in figure 2.4. No attempt was made

to correlate these data.*

At temperatures above about 20,000 ° K, the information about the

radiative properties is not so comprehensive. Most of what exists

consists of Planck and or Rosseland mean absorption coefficients for

continuum radiation. Line radiation is neglected. At these high

temperatures, the radiation consists of spectral lines of the various

ions which may be appreciable Stark-broadened at high electron

densities, and a continuum due to free bound and free-free transitions

of electrons in collisons with the ions. Since the integrated line

emission is proportional to the ion density while the continuum

emission is proportional to the product of ion and electron densities,

the ratio of the latter to the former increases with increasing

density. Thus, at the higher density levels, the continuum calculations

may be adequate.

It was noted from the results presented in references 45 and _6

that the functional form of the monochromatic mass absorption coeffi-

cient is approximately

(2.94)

" where the subscript refers to the lth radiating species.
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CHAPTER III. THE SMALL PERTURBATION SOLUTION

A. The Conventional Method

As was pointed out in chapter I, there is a flight regime of

considerable importance in which the radiation cooling parameter ¢

is very much less than unity. In this regime, the energy transferred

by radiation is small compared to the influx of kinetic energy across

the bow shock, and it would be reasonable to expect the flow prop-

erties to be only slightly perturbed from the radiationless case.

Lunev and Murzinov (ref. 4) and Goulard (ref. _) took advantage of

this and developed what amounted to first order perturbation solutions

of the temperature distribution in the inviscld region of an

transparent, gray gas layer. In both these papers, simplifying

assumptions concerning the gas properties and flow modelhave been

included.

In this section, the perturbation solutions will be generalized

to include nongray gases with arbitrary thermodynamic and optical

properties. These solutions will not be limited to shock layers of

small optical thickness. Also, the solutions will be extended to

second order. As will be shown, the second-order solutions can be

quite important when the absorption coefficient varies rapidly with

temperature.

The integrodifferential system which governs the flow in the

inviscid region of the shock layer is

62
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2f(_) _"(_) - [_,(t).]2 a2+ h(,1) = o

(3.1)

(3.2)

f(o) = o (3.3)

f [,l,,)= ] (_._)

(3.6)
= ×LR#= #2×(1 - ×)

Here f(q) and h(q) are the nondimensional stream function and

enthalpy, respectively. The quantity _ is the value of the

Dorodnitsyn coordinate at the location of the shock. The constant

a can be expressed in terms of ×, the density ratio across the

shock, through expression (2.89). When the radiation cooling

parameter ¢ is very small, the integral term in equation (3.1)

becomes of only secondary significance throughout most of the domain

the problem. Neglecting the integral term I L_ J reduces theof

problem to one in which radiation does not play a part. If, as

expected _;hen _ is small, the presence of radiation only slightly

With the obvious exception of the region q _ 0 where f(q) _ O.

The difficulties presented by this exception will be discussed later.
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influences the solution one can, to reasonable accuracy, evaluate

I_ using the radiationless solution for h so that equation (3.1)

becomes purely differential. Thus, when the small perturbation

procedure (which roughly proceeds in the manner outlined above) is

applied to this problem, the integrodifferential system is simplified

to a purely differential system. In addition, as a result of the

nature of the lowest order solution for the enthalpy distribution,

the two differentiA] _n_nn_ _ .... _,_._ Q_ _ _ _

independently. Hence, it becomes possible to obtain analytic solutions

to any order of approximation to the flow in the inviscld region of

the shock layer. Details of the derivation of' these solutions are

presented in appendix B.

The zero-order, or radiationless, solution is simlpy

_o(,r_)_ 1 (_.7)

f (_) = (1- a)_ 2 + a_
0

(_._)

The first-order solution, which represents the effect of radiation

sssumlng that the emissive power of the gas is independent of

temperature, is

hl(_) = (1 - a)x 2 + ax
(_._>)
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_l_ __cla)_÷_So_ °l_x)

J

dx

Here x is a dummy variable of integration. The quantity Io[B]

given by the formula

(3.io)

is

The notation has been simplified somewhat in this expression by

omitting the arguement h ° in the terms _k and B_ and by

introducing the quantities

(3.il)

kk = _ _k (3.12)

jlP,

rok rw - 2E3 k

Also

1 2
¢1(q) = - _ a hi(q)

The second-order solution takes into account the change in

gas properties with changes in enthalpy. This solution is

().i3)

(9.1h)
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(5.15)

pTI ¢2(x)

1 2 pl 2(1 - a)x+ a
/ i.,

(3._6)

where

+ I1" roh)E2Ekk TI_" 2" k B?_tdk

<- { "/o1

'F1

+

0

hi(x)

hl(X)d_x_+ E2/k?_TI]} dk
rl_k

(5..t7)
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Here the arguement h is omitted in the terms
o

quantity is defined by the expression
rlk

_ and Bk and the

Also

rl k _ hl(X) E2(kkx ) dx

" zlf _ 2 _ 2¢2(q) = -fl(q) fl(q) + _ _,(:] - _ a h2(_) (3.19)

The quantities 11_0, 112k1_,and h_2 are given by the formulas

na = i (3.20)
o

i ?1 (x)
(3.21)

z I
_A2 = (1 - a)_ + _ [(i- a)x + a] 2

dx (3.22)

It can be seen upon inspection of relation (3.17) that a large

value of the rate of change of the Planck mean absorption coefficient

with enthalpy will lead to large values of IiEq] • Thus, it is clear

that at shock temperatures of less than about 30,000 ° K, for which the
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absorption coefficient does vary rapidly with enthalpy, the second-

order solutions can become more important to the overall solution

than their order in ¢ might at first indicate.

B. The P - L - K Method

As can be seen from an inspection of the e_ressions (3.9) and

(3.1_) the first order solution for the enthalpy distribution has a

logarithmic singularity at the point _ = 0 and the second-order

solution has a singularity of greater strength at this point. As a

consequence, the assumed expansion diverges as the origin is approached

and the small perturbation solution is not uniformly valid throughout

the domain of the problem. This divergence can lead to serious errors

in the calculation of the radiant heat flux to the wall because those

regions close to the wall, in which the largest errors occur_ are

given the most weight in the calc_ationo This is particularly true

for shock layers which are not optically thin. Additional difficulties

are encountered when attempting to specify the proper outer boundary

conditions for the viscous boundary layer equations. In classical

boundary layer theory, the outer boundary conditions are obtained

from the values of the outer (or inviscld) solution at the

(_ = 0 in this problem). Because of the divergence of the outer

solution, no finite value exists at _ = O.
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In this section, the Poincare-Lighthill-Kuo perturbation of

coordinate procedure (ref. _7) is used to obtain a solution which

is uniformly valid over the domain of the problem. The details of

the application of this method to the problem of this paper are

presented in appendix B. This method utilizes a coordinate trans-

formation in the form of a perturbation expansion of the coordinate

to remove the singularity (which caused the divergence of the con-

ventional solution ) from q = 0 to a small negative value of q

which lles outside the domain of the problem. The P-L-K expansions

are

= x + c_1 (x) + ... (3.23)

h(_;c)= h° (x)+ _hI (_)+ ... (3.2_)

f(_;_): fo (x)+ _fi (_)+ "'°

_There x is the coordinate in the transformed plane, and the

superscript * has been used to differentiate between the coeffi-

cients in the P-L-K expansion and the coefficients in the conventional

expansion. Pritulo (ref. 48) has derived a general relation between

the P-L-K and conventional coefficients. Adapted to this problem,

the relationships become

Variously called the P-L-K method, the P-L method, Lighthill's

technique, the method of strained coordinates, and the method of

perturbation of coordinates.
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h° (x)= h° (x) (3.26)

hI (x)--hI (x) (3.27)

fo (x)--fo (x) (3.28)

fm (x)= fl (x)+ um (x)f' (x)0
(3.29)

'l "" -2 "--'I"'l "'-" _"

The second-order term h2 (x) introduces the effects of variable

thermodynamic and optical properties, so it is apparent that these

effects are contained in the first-order P-L-K solution.

A comparison of the P-L-Kand conventional perturbation solutions

for the enthalpy distribution for a constant density, transparent

shock layer is presented in figure 3.1. The divergent character of'

the conventional solutions is apparent. Also shown on this figure

is the exact analytic solution which can be obtained in this simple

case. The formula for this exact solution is

q

j#
where 7 (the exponent in the correlation formula _B = 17 )

taken to be 6 and the constant a (which appears in the momentum

(3.51)

_ras
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eq. (3.2)) was taken to be 0._. The good agreement between the

P-L-K solution and the exact solution indicates that the accuracy

of the P-L-K solution is probably second-order in the radiation

cooling parameter e throughout the domain except in the immediate

neighborhood of the wall. It is clear that quantities such as the

radiant heat flux at the wall, which depend upon an integration

over the enthalpy distribution, will be considerably more accurate

if the P-L-K solution rather than the conventional perturbation

solution is used.

It should be noticed that the P-L-K solution does not lead to

zero enthalpy at the wall as the exact transparent solution does.

The reason for this disparity can be found in the fact that the

coordinate stretching displaces the boundary with regard to both the

energy and momentum equations but not by a uniform amount. Thus, a

physical interpretation of the first order P-L-K solution is that the

normal velocity of the flow at the boundary for the energy equation

is not quite zero, and a particle approaching this boundary will

reach it in a finite time before losing all its energy by radiation.

It can be shown that since the expected error in the Dorodnitsyn

2
coordinate _ in terms of the stretched coordinate x is order e

and since the gradients in hI (x) are very large in the vicinity

of the wall, the difference between the P-L-K and exact solutions at

the wall lie within expected limits. Convergence to the correct

solution should be attained with the addition of higher order terms

to the expansion of h and _.
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C. The Method of Matched Asymptotic Expansions

Van Dyke (ref. 36) has pointed out that the method of matched

asymptotic expansions is applicable whenever the P-L-K method can be

used. Thus, it would be interesting to formulate the solution when

_a1_+_ _ A _m_11 p,--,.-v-._-)-_+-v,-,,_ _1_g +_ me+_d _f -_÷_oa o__

totic expansions. Use of this method implies that the domain of the

problem can be divided into at least two regions in which the governing

equations tad_e on different asymptotic forms. There must also be some

_ _e_enoverlap between adjacent regions so _ha_ a smooth transition -_....

solutions valid in these adjacent regions can be affected. In the

problem of this chapter_ the regions are the "outer" region in which

the conventional perturbation solutions are valid and the "inner"

region in the vicinity of the wall at _ = O. The equations which

describe the conditions in the outer re,sion are simply the system (3.1)

to (3.6). In order to obtain the '_ooundary layer" form of these

equations, it is necessary to stretch the coordinate q in the

vicinity of the wall. This stretching takes the nonlinear form

= (3.32)

=

where _ is the stretched boundary layer coordinate and F(_) is

the velocity function written in terms of _. It follows from

above that

--
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and the energy and momentum equations, respectively, take the forms

where

and

2F(_)F"(_) -[F'(_)_ + a2 H(_) = 0

One boundary condition is available, that is

F_) = 0

The remaining two constants of integration can be obtained by

matching the inner and outer solutions according to the matching

principle put forth in reference 36.

The boundary layer system is seen to be quite complex. The

energy and momentum equations remain coupled so that it is necessary

to obtain a simultaneous solution to the two equations. Thus, as

is often the case when the P-L-Kmethod can be applied, its

application is much simpler than the method of matched asymptotic

expansions.

(3.3E)

(3.35)

(3.36)

(3.37)
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D. Results and Discussion

The formu/as derived in the preceeding sections of this chapter

were programed for n:_nerical computation on the IBM 7094 electronic

digital computer. The value of X, the density ratio across the

normal shock, was fixed at a constant value of 0.06 for the calcula-

!,ions reported on in this and subsequent chapters. This choice is

justified because X varies but little with altitude and velocity

and the effects of this variation on the stagnation solutions are

slight. The value X = 0.06 is typical for hypervelocity flight in

the atmosphere of the earth.

The numerical calculations indicate that the enthalpy is a

double valued function of the Dorodnitsyn coordinate _l in the

vicinity of the shock for large values of the Bouguer number.

_Ln examination of the governing equations failed to show the presence

of any singularities which might adversely ini'luence the solution in

this region when kp is large and ¢ small. On the other hand,

the results of numerical calc:_lations with varying mesh size seemed

to rule out the possibility that the doubled valued behavior can

be attributed solely to numerical inaccuracies. Consequently, it is

suspected that the difficulty results from truncation of the

perturbation expansion and that inclusion of higher order terms would

either eliminate the problem or increase the value of kp at which

it first appears. For truncation after the second order term the

conditions for validity of the solution is Ckp < i.



76

Gray gas results

Shock layer enthalpy distributions for a gray gas with differing

values of the radiation cooling parameter ¢, the Bouguer number kp,

the variation with enthalpy of the Planck mean mass absorption coeffi-

cient _p, and the reflectivity of the body surface rw are presented

in figures 5.2 to 3.4. While the gray gas assumption may not be

realistic for most gases of interest, its use is felt to be justified

in the study of the above listed parameters for two reasons. First,

the highly complex and varied spectral structure of absorption

coefficients makes a general parametric study of nongray gases imprac-

tical. Second, experience with nongray calculations indicates that

the qualitative dependence of the gray results on the various parame-

ters will carry over to most nongray cases.

The decrease in enthalpy level with increasing e is illustrated

in figures 3.2a to 3.2c. These results indicate that the loss of

energy from the shock layer by radiation (i.e., radiation cooling) can

produce a noticeable drop in enthalpy for values of _ as small as

O.O1. The dependence of the enthalpy distribution on the Bouguer

number (hence, optical thickness) is also shown in these figures.

As expected an increase in the Bouguer number (or optical thickness)

inhibits shock layer cooling and leads to higher values of enthalpy

near the wall.
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The variation of the enthalpy dlstributionwith _ (the

enthalpy variation of the Planck mean mass absorption coefficient)

for several values of the Bouguer number _ is shown in figures 3.3a

to 3.3c. These effects are most noticeable for optically thin shock

_k_ << 1.0_ and tend to vanish as the optical thicknesslayers
1

increases. In a transparent layer, the rate of emission of radiant

energy is proportional to the Planck mean mass absorption coefficient

_. Thus, gases with small values of _ (which mean larger values

of _p when the nondimenslonal enthalpy is less than i) will be

cooled more than gases with large values of _. As the optical

thickness increases smaller _ still implies greater emission rates

but it also means greater absorption and more radiant energy available

for absorption. The process of absorption tends to counteract the

differences in emission rates due to differences in _. Finally,

when radiation equilibri_a is reached (this state Is achieved in the

interior of optically thick regions) the energy of the particle is

independent of its optical properties. Of course, in those regions

optically close to the shock and the wall the amount of radiant energy

available for absorption is not so great as in the interior of the

shock layer and particles in these regions cannot approach the state

of radiation equilibrium (except in a region optically close to a

perfectly reflecting surface). Thus, the enthalpy distribution

remains dependent on the value of _ near the shock and the wall.

This dependence of _ is surpressed near the shock where h is
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almost 1 because the values of _p are nearly the same dispite the

differences in
p"

The effect of surface reflectivlty, rw, on the shock layer enthalpy

distribution is shown in figures _.4a to 3.4c. If the shock layer gas

is transparent (i.e., the gas does not absorb) surface reflectivity

has no effect on the onthalpy distribution because all photons emitted

by the ]ayer escape. _Cnether or not a photon is absorbed or reflected

by the wall is of no consequence. As the optical thickness of the

layer increases the chance of capture of a photon by absorption in

the layer is increased. If the _urface reflectivity is increased also,

the probability of capture is increased still further because many

photons which might otherwise have escaped into the wall are reflected

back into the layer and are once again subject to capture there.

Consequently, the enthalpy level is higher near a reflecting wall

than it wo<dd be near a nonreflecting wall.

It can be concluded from the above, that use of a reflecting

surface will not reduce the radiant heat transfer rate from the gas

to the wall by the factor 1 - rw (unless, of cource, the gas is

transparent) but will reduce it by some smaller fraction. This Js

because the radiant heat flux incident on the wall is larger when the

wall is reflecting as a result of the higher enthalpy level. In

addition, the rate of heat transferred to the wall by conduction

wi]_l be greater, also because of the higher enthalpy level. Of

course, increasing the surface reflectivity always decreases
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the total heat transfer rate to the wall because the higher enthalpy

level must lead to an increased loss of energy by radiation through

the shock in the upstream direction and by convection in a lateral

direction away from the stagnation point. If the energy balance is

to be maintained, the rate of heat transferred to the wall must be

reduced.

The effects of variations in the parameters ¢, I_, _, and r W

on the rate of r_1_nt heat transfer to the wall (normalized by the

1energy influx to the shock lamer , _ p ) _ are shown in figures

3._ to 5.7. The rate of radiant heat transfer to the stagnation

point was calculated with the formula

_here the optical thickness _ _ is given by

(3.39)

_o I]T(G) = kp _(q)d_ (3._0)

The dashed curves in fi&_re 3._ indicate the "no decay limits"

for various values of the Bouguer number. These limiting curves were

computed by assuming the shock layer to be isenthalpic so that

Thus, the no decay limit curves are given by the

% = " C3.' l)
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where E3(kp) is the exponential integral function of third-order.

This no decay approximation is often used to predict the rate of

radiant heat transfer _'hen radiation effects are small. Use of this

approximation always gives an upper bound to the true value of _.

A study of figure 3._ indicates that the no decay limit curve is

least accurate in predicting the rate of radiant heat transfer in

the transparent case kp = 0 . This result is expected because the

enthalpy distribution for the transparent case is the most perturbed

from an isenthalpic state. Results presented in this figure also

indicate the importanceof absorption (as characterized by the B0uguer

number kp in reducing the rate of radiant heat transfer from the

shock layer to the wall.

The results presented in figure 3.6 indicate the differences in

, the enthalpy variation of the Planck mean mass absorption coeffi-

cient, are most important when the optical thickness of the shock

layer is small.

Here the radiant heat transfer to the wall is greatest for the

smallest value of _. This, of course, supplements the observation

(from fig. 3.3a) that radiation cooling is greatest for gases in

which _ is least. The differences in radiant heat transfer to

the wall brought about by differences in the value of _ tend to

vanish as the optical thickness of the layer increases.

The reduction in radiant heat transfer to the wall due to surface

reflectivity is shown in figure 3.7. _'_en the shock layer is trans-

parent, the rate of radiant heat transferred cLR. is in the ratio
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1 i r •

w

the ratio becomes somewhat greater than i - r
W

However, as the optical thickness of the shock layer increases,

as predicted in an

earlier discussion of this section.

The effect of the parameters ¢, _, and r on the shock standoffW

m

distance is shown in figures 3.8 and 3-9- The quantity & is the

ratio of the shock standoff distance in a radiating shock layer to

that in a nonradiatlng (or adiabatic) shock layer at the same flight

conditions, and _as computed with the fo_rm_!a

The results shown in figures 3.8 and 3.9 indicate, as expected,

that a decrease in enthalpy level (with the consequent increase in

density level) in a shock layer leads to a reduction in shock stand-

off distance.

Nongray results

It can be seen from figules 2.2 that the absorption coefficient

of high temperature air depends strongly on wavelength. This is true

of all other gases as well. Consequently, the assumption that the

gas is gray (i.e., that the optical properties of the gas are inde-

pendent of wavelength) is poor indeed, and has been resorted to so

frequently in the literature only because of the resulting relative

simplicity. Fortunately, the small perturbation solution derived

in this chapter overcomes these difficulties by reducing the
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absorption integrals in the divergence of the radiant flux to a form

amenable to direct evaluation. Thus, one need only perform an

integration over a i_uown, albeit complicated, function of wavelength.

In view of the current uncertainties, with regard to spectral dis-

tributions of gaseous absorption coefficients, it was decided to use

a simplified model for the absorption coefficient of air. Consequently,

the step function model shown in figure 3.10 was chosen for use in

calc_ations to be reported on herein. The height and width of the

steps were chosen so that the simple step function model provides an

adequate representation of the absorption coefficient of air at a

temperature of about 15,000 ° K as predicted by Nardone et al. (ref. 25)

and so that the Planck mean absorption coefficient of both distri-

butions are e_ual. The relative heights of the nine steps located

at wavelengths less than O.113 microns were chosen to be independent

of enthalpy while the tenth step which covers the wavelength interval

(0.113, _) was chosen to vary as the 1.28 power of the enthalpy. The

relative heights shown in figure 3.10 are for h = l, where h is

the nondimensional enthalpy. The enthalpy variation of the step

heights listed above is consistent with the condition that the Planck

mean mass absorption coefficient is proportional to the fourth po_er

of the enthalpy.

Shock layer enthalpy distributions were calculated using the

nongray absorption coefficient model for various values of the

Bouguer number, kp. A comparison of the results of these calculations
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with gray calculations using the Planck mean mass absorption

coefficient is presented in figures 3.11a to _.llc.

The maximum monochromatic Bouguer number for the nongray shock

layers is 186 times the Planck mean Bouguer number. _Pnen the Planck

mesn Bouguer number kp is less than about O.OO1 (this case is not

shc_m) the shock layer is optically thin at all wavelengths and no

perceptable difference between the nongray and the gray calculations

for the enthalpy distribution can be found. When kp = O.O1 the

monochromatic Bouguer numbers for several of the steps are order of

magnitude unity and absorption becomes ir%oortant in the nongray

model whereas absorption is still negligible in the gray model. As

a consequence, of the above the enthalpy distribution for the non-

gray model lles above that for the gray model. _,_en kp is

increased to O.1, the disparity between the two solutions is

increased still farther. In this case, absorption is very important

in those regions of the spectrum for the nongray model in _rhich much

of the energy is emitted. Absorption is still of minor significance

in the gray model. %_len i_ = 1.0 absorption becomes important in

the gray model but still not to the extent that it is in the nongray

case.

Obviously, and not unexpectedly, a gray model which uses the

Planck mean mass absorption coefficient will not provide an acceptable

estimate of the shock layer enthalpy distribution for a nongray gas

unless that gas is optically thin at all wavelengths in which a
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significant amount of radiation is transported. Nevertheless, it is

very interesting, and encouraging to note that enthalpy distributions

computed for the nongray models do not differ significantly in their

general shape from those that can be computed for gray models. Thus,

it appears that there is some wavelength averaged absorption coeffi-

cient (other than the Planck mean when absorption is important but

tending toward it in the transparent limit) which will provide a good

approximation to the enthalpy distribution in a nongray gas.

The rate of radiant heat transfer to the stagnation point has

been calculated for nongray shock layers. The results are compared

in figure 3.12 with the results of gray calculations using the Planck

mean absorption coefficient. The gray approximation provides a

considerable overestimate of the radiant heating even for values of

the Planck mean Bouguer number as small as lO "3. It is apparent from

this result that the tallest steps play a very important role in the

transfer of energy by radiation. This is not surprising when one

considers that nearly 40 percent of the energy emitted by a particle

in the shock layer is transmitted in the wavelength intervals occupied

by the three tallest steps.

It can be concluded from the foregoing discussion that the

effective optical thickness (or Bouguer number) of a nongray shock

layer is greater than that predicted by a gray analysis using the

Planck mean absorption coefficient. In order to account for this by

means of average absorption coefficients, it seems proper to follow
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the advice of Viskanta (ref. h9) and introduce & 'bean emission

coefficient" and a '?aeanabsorption coefficient." As Viskanta

pointed out, the divergence of the radiant flux is composed of two

terms, one of which accounts for emission and the second for absorp-

tion of radiation in an element of volume of radiating media. In

particular, for this investigation, the divergence of the radiant

flux may be wrltten (see eq. (2.67))

0 o

where

104

(3.34)

(3.3_)

II

f,

The first term on the right-hand side of equation (3.34) is the local

emission term. The integration over wavelength can be performed for

this term using the definition of the Planck mean absorption coeffi-

cient (eq. (2.68)) so that equation (3.34) becomes

_I[_]= -2_(_)_(_)

_ Z ® %(_) oX(_)d_+

(_.}6)
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Thus, the mean emission coefficient is identical to the Planck mean

absorption coefficient. The mean absorption coefficient can be

defined by the formula

 a(q)= (3-3?)
p_

' G_( TI)dk
_o

@

Unfortunately, the spectral characteristics of the quantity Gk(q)

which represents the amount of radiant energy incident per unit mass

on an el_nent of mass located at q, depends on the spectral charac-

teristics of the radiating media and the boundary surfaces. Therefore,

the spectral distribution of GI(_) will not be the same as that of

the Planck function Bk(_) which depends only on the temperature at

and in general Ka _ _p. The primary difficulty involved in the

determination of the mean absorption coefficient K is that the
a

been solved. This difficulty does not arise in the use of the small

perturbation method of this chapter, of course, because the _lantit_es

in the equations of various order in e corresponding to Gk(q) are

kno%m rigorously from the solution of the lower-order equations. In

problems %There GA(q) is not known explicitly, it is hoped that it

will be possible to obtain a reasonable first approximation.



CHAPTER IV

OPTICALLY THIN SHOCK LAYERS

A. The Transparent Approximation

Under certain conditions, the Bouguer number, which is indica-

tive of the optical depth of the shock layer, is very small compared

to unity. _en these conditions are met, absorption is unimportant

and the absorption integrals which are modified by the Bouguer number

can be dropped from the expression for the divergence of the radiant

flux vector (see eq. (2.86)). This leads to considerable simplifi-

cation because only the local emission rate of radiant energy need

be considered. All of this radiant energy is assumed to escape the

shock layer and it matters not, insofar as the gas is concerned,

what path it takes. Consequently, surface reflectivity will have no

influence on the enthalpy distribution in the shock layer. Since

only the total rate of radiant energy emitted locally is of interest

the details of its spectral distribution can be ignored.

_le results of the simplification is the "transparent" form of

the divergence of the radiant flux vector

_rhere I E_ ] is the divergence of the radiant fl_ vecSor,

is the Planek mean mass absorption coefficient, and B(_)

black-body function.

(_$.i)

the Planck

The shock layer is termed, transparent because

m6
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the gas is transparent to its own radiation. Use of the transparent

approximation reduces the governing equations from integrodifferential

to purely differential form. Several investigators (see, for example,

refs. h-7) have t_en advantage of this simplicity to obtain approxi-

mate analytic solutions.

B. The Optically Thin Approximation

In this paper, a distinction shall be made between the terms

"transparent" and "optically thin." A layer of gas will be called

transparent if none of the radiation emitted by the gas in the layer

is reabsorbed. An optically thin layer is one in which a small

_mount of absorption does occur and the optical depth of the layer

is small but not zero. In the literature, "optically thin" is often

used synonymously with "transparent" as defined above.

P. D. _lomas (ref. 27) expressed concern about th_ validity of

the transparent approximation, particularly in the highly cooled

region adjacent to the cold wall. The transparent approximation is

based on the assumption that emission is much _reater than absoz_tion

throughout the shock layer. In regions of small enthalpy, emission

no longer dominates absorption, and when radiation cooling effects

are large, these regions may extend over a significant portion of

the shock layer. Even _en radiation cooling effects are small, the
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value of enthalpy adjacent to the _.lall tends to vanish and absorption

must become important compared to the local rate of emission. Of

course, for this case, the region of nonvalidity is very small and has

no appreciable effect on overall properties such as the radiant energy

flux to the _Tall and the shock standoff distance.

Thomas sought to modify the transparent equations in order to

take into account this small amount of reabsorption. He did so by

expandinc_ the Planck function Bl(t) _hich appears in the integrand

of the divergence of the radiant flux vector in a Taylor series about

the zero of the arbmament of the displacement kernal _(kpJT_ " t_j).

The expansion is then arbitrarily truncated after the linear term.

Strictly speaking, this procedure can be used only when the Planck

function varies slo;:ly _.Tithin a photon mean free path length. Obviously

this criterion is not met when the shock layer is optically thin

(particularly close to the _all, the region of _:reatest interest,

_-_here the enthalpy and hence, the Plar_ck function varies rapidly) and

some doubt must be cast on the .validity of Thomas' analysis.

It _ould appear that the effects of small absorption co1[Id better

be discovered through a straightforward expansion of the equations in

terms of the Bouguer number kp. Such a solution, up to first-order

An element of gas approaching the wall requires an infinite time

to reach its destination. Because of this and the fact that the rate

of energy lost by radiation is proportional to a positive power of the

enthalpy, the enthalpy of a transparent gas must approach zero as the

particle approaches the wall.
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in kp, is presented here. In order to simplify the analysis the

exponential integral functions E2(x) and Es(x) which appear in

the expression for the radiant flux are replaced by the exponential

funmtions e "2x and (i/2)e -2x, respectively. The particular form of

the exponential functions was chosen so that the area under the

cL_rve of E2(x) and the approximating exponential are equal for

the interval (0, XA) , for xA << l, and so that the value for the

radiant flux reduces to the proper value in the transparent limit.

This substitute kernal approximation has been used with considerable

success in a variety of problems of radiant _ransfer (see, for

example 3 refs. ll3 303 31, and 50).

Use of the substitute kernal approximation reduces the expression

for the radiant flux to the form

-2kpTx(q) P _A ....pTk (_)

+ rw e Jo _(_)B_(_)e a a_
('-.2)

The divergence of the radiant flux vector is

-- -
h(_)B_(_)e-2kPl_(_)'_(_)l

+re

Jo "_'(_')_'(_)e
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Here the monochromatic optical depth is

=

It was seen in chapter III that an expansion of the governing

equations in terms of the small parameter ¢ led to a fortuitous

uncoupling of the energy and momentum equations. Unfortunately, the

same is not accomplished when the expansion is performed in terms

refs. 4 and 6) that the coupling is quite weak. Advantage can be

t_qen of this situation by replacing _3(q) = h(q) which appears

in the momentum equation (2.71) with h, the integrated average of

h(_) over the intelu_al (0: B^]; that is,
_j

1 f_LS h(_)dq (_ _)• J

(This replacement is tantamount to solving the moment_nn equation by

the integral method with f(_) assumed to be a quadratic function. )

_is approximation has the twin virtues of retaining the coupling,

The solution to the momentum equation depends on the solution to
2

the energy equation through the term a _=(_) (see eq. (2.71)) where
2

a is order of magnitude X. An analysis of equation (2.71) indicates

that the contribution of this term to f(_) is order _X. Since X

is very small (typically 0.06) the effect of the solution of the energy

equation to f(_) is order 0.2_.
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albeit in approximate form, and greatly simplifying the solution to

the energy equation.

Nowthe governing system of equations takes the approximate fon:1

fCu) h'Cu) + _Z[_] = 0 (1_._)

2

2f(,i) f"(,1) -I-f'(,i)_] + 2 _-_ o (',.7)

f(o) = o (_,.::_)

f(qa): l (_,.!?)

( ) : a (J,.lO)f' '1_ 1/,2x(1 _ ×)

h(_A)--I (_.Zl)

_._hel'e I[q] is given by equation (h.5). _:,_lenthe Bouguer n_uuber is

,,ez'ysmall, the absorption integrals in equation (_.5) ass[une a

secon&ary significance throughout the domain of she problem. NeglecL-

in C these absorption integrals z'educes the system to purely differ-

ential form. If, as expected, _zhen the Bouguer n[anber kp is small,

the presence of absorption only slightly influences the solution one

can, to reasonable accuracy, evaluate the absorption integrals using

the transparent solution for h. The perturbation expansion scheme

used herein follows the general outline discussed above. Mathematical

details are presented in appendix C.
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The zero-order, or transparent, solution is

rl dh 2¢_A (i - a*)x + a*

J ,,C o)°Co)_p - .h Bh a x
O

(_,.12)

f (_:) : (_ -a )x-+ a _: (_:!_j,)
O"

where

a

0

* 7h _ (t4.. I_ )a = 8 _A

O

O

z + V2x(z - x)

+ @%×(_. ×)

1% = ho(X) dx (h.17)

It vas sho_'n in chapter II tlmt the Planck mean mass absoz_ption

coefficient normalized by its value immediately behind the shock can

be adequately represented by

(I_.18)
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1 _ h*where _ is the value of the enthalpy (depending on the pressure,

of course) at which the value of the exponent of h changes. The

constant CI is obtained by equating the two expressions for

_p(h) at h = h*

with the result

cI = (h*)r2"_l (4.19)

It _ess also shown in chapter II that the nondimensional Planck

function B(h) is approximately given by the ex%)ression

B(h)= h2"2 (_.2o)

t._en the correlation formulas (b.l$) and (_.20) are introduced

into equation (h.12) the integration on the left-hand side can be

carried out, and the solution for ho(X) given by the explicit

formula

1

hotX_, = 2e 2 +.I" _AO

a X .._ (II.21a)

for ho(X) _>h*, end

_D(1, .__ib)
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The first-order solutions _rhich include the effects of

absorption, surface reflectivity, and nongray radiation are

presen tedt below,,"

hl(::): -_e_po(_)B°(>:)(ial

L

(i- x) 1
Zn (i - _._)_ + a*i[ '

if
,X I

+ (i + rw)m P (X)Bo(X)_ &
0 0

. i pi _, (h)<h

0 0 ,, ,, _ .

nz_
0

¢< ,i + ._.(i-._) ]

_,_here

0

%
0

:, ; 4)

hl= -'X- =< -'7
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C. The P-L-K Solution

Careful inspection of the last term on the right-hand side of

equation (4.22) reveals tlmt the first-order te_n hi(z) displays

a singular behavior near B = 0 (_ere h approaches zero). By
O

}_ay of illustration consider the case of a gray gas with _p(h) = h7

and B(h) = h2"2. In this case the term in question is proportional

to the quantity

0

")6Near the wall, h approaches zero and equation (4..) approaches
O

Z+}.6

::hich increases without limit. _iis_ seemin[_iy_ ::_um_hnJ_,l_i._,i__.

can be explained as follows. The first-order sol_tion ue_rese_ts _

gas which absorbs radiation at a rate determined i:,, _l_e ,_,_:;(,:-_: ]_,,,

coei'ficient for a transparent gas* while it. emit,_.__::nc:c_;::_ _ .,<:__.

proportional to the derivative with respect to _l of Lhe _mL:_,_)i,,:::
0

l'ate for a transparent gas. Both the absorption _d e,l,iosion _at,_

The magnitude of the incident radiation .i:s'!.:_,J.e]_._,_:i,::_.:<_._,.c
amount absorbed.
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tend to zero as an element of gas approaches the wall. However, the

emission rate tends to zero much more rapidly than the absorption

rate. The difference in the limiting behavior of these rates couple_i

_ith the infinite residence time for an element of gas in the

stagnation region allows the gas element to absorb an infinite _mount

of ener_;y and so the enthalpy of the gas adjacent to the _all becomes

infinite.

_le difficulty vhich has arisen as the result of the singularity

.L ,y ,c_qn be avoided _hl_u_h the use of the P-L-K perturbation of coordi

na_es procedure which transforms the coordinate _r such a ray that

the singularity is removed from the boundary (at x = O) to a point

outside the domain of the problem (a slightly negative value of x).

Mathematical details of the application of this method are described

in appendix C. The P-L-K solutions to first order in kp are

(i..%: i )

( _; ./.i )

]_here the starred coefficients in the P-L-K expansions are related

to the unstarred coefficients in the regular per tl_ihati_n ex-i,a_;_i<_=:_

(see ref. _)



h_(y) = h (y)
0

f (j)= fo(y)

f (y)= fl(y)+  l(Jlf;(y)

lit

(4.5o)

(_.]i)

D. Results and Discussion

<)FJ

,.i S;ca_l,, thin shock layer approximation, the results computed for a

t,_h_ical case are compared in figure h.1 with the results computed by

means of the small perturbation method of chapter ili and the results

of a nt_aerlcal calculation performed by Howe and Viegas (ref. 9). The

agreement mmong the three solutions is excellent. However_ a word of

caution should be interjected here in order to avoid the implication

that the numerical results of Howe and Viegas represent the "exact"

solution to the inviscJ_J_ plane-parallel geometz*y: ._ta_<nati,_i__]_,.

model. The results of Howe and Viegas include _is_osit_, h<at, con-

ductivity, and body curvature. The effects of curvatu_-e al'e expected

to be quite small. The flight conditions (W_ = 9.Y5 km/s_c_

ps = i0 atm) were chosen to insure that the hounda_%_-la[fc_ _ _<,asvery

thin so that "displacement" effects on the inviscid region _L_e[*e

minimized. Finally, the thermody_c and optical properties used

by Howe and Viegas were obtained from their own correlatJo_is while

the optically thin and small perturbation methods were comp_Ited i_sing

the correlations presented herein. Thus_ the comparisons betweer_ the

results £rom _he methods of this paper and the n_uericai results of

Howe and Viegas are as much, or more_ checks on the ,za].iditj ,_i _sing
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Figure 4.1.- Comparison of the optically thin and small perturbation

solutions with numerical results.
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the inviscid approach and checks on the similarity of t_o different

sets of correlations as they are checks on the accuracy of the ana-

lytical methods of this paper. It is not inconceivable that erors

due to the various factors mentioned tend to cancel in _his ex_Lole.

Nevertheless, the individual errors due to the oi_ission o_ viscosity,

heat conductivity, and curvature and due to _he difference in cozr_ia-.

tion functions are expected to be quite small so that the excellent

agreement can still be interpreted as an indication of th_ accuracy

of the methods of this and the preceding chapter.

The approximate solution derived in the pr_ce_i_-_p_ section, s of

this chapter _Tas used to study the effects of the i'adiation coo!in_

par_uueter, £_ the Bouguer number kp, the surface reflectivlty r j,

and the enthalpy dependence of the absorption coefficient on the shock

layer enthalpy distribution, the rate of radiant heat transfer to the

stagnation point, and the shock standoff distance. As in the previous

chapter, the density ratio X across the near noI_al po_'t_on of_'the

shock _,_asfixed at a value of 0.06. In addition, all fil'_e1'es,_]I_ uJ-_

limited to the case of a gray _as.

_le effect of absorption on the enthalp¥ distribution .is

indicated by the CUl_¢es of figure 4.2. %%Ie sol.id curves _-e_r._]_

the enthalpy distributions in transparent sho_k i_2e_ _ f'<_' £ = 0_0_.,

!.O, and lO0. The dashed curves l'epl'esent the enth_ip_: dist_-ib,_L,i<,_

in optically thin shock layers for the ss_e values of the _'adJation

cooling parameter ¢. Values of the optical thicl_,esscs a_'c u[_,,wn _,n

the fi_ulre. These results show the expected trend with i;he _nthe_Ip.y

level falling as the radiation cooling parameter ¢ incre_c_.

Absorption tends to increase the enthalpy pam'ticI_/arl2 _, the cooler
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Figure 4.2.- Effect of absorption on the enthalpy distribution in an

optically thin shock layer.
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b

_'egions of the flow. Absorption also affects the location of the shock

reducing the value of _/_ (the location of the sl_ock in terms of the

Dorodnitsyn coordinate) because of the decreased density ]e,.,ei

Although the value of _ decreases, the shoch standoff ._Iistan<:e

increases with increasing optical depth.

The effect of the enthalpy dependence of the absozpt'_on cccffici_nt

on the enthalpy distribution in transparent shock layers is shown in

figure h._. In Dart (a) the absorption coeffic_eut _,_ £i_,,_r.i,_,+h_

relation _p h 7, where 7 takes on the values _, _'= -_ _d 5. TLe

value of F determines how the rate of energy em.ission varies with

enthalpy across the shock layer. The rate of energy loss by radiation

will decrease more rapidly as the enthalpy falls if 7 is large than

if it is small. Consequently_ the enthalpy distribution fo_" a large

value of 7 lies above that for a smaller value_ 'l_'_Js,of course,

is the same trend exhibited by the small pertu±"b_tion so]utio_:s of

the previous chapter, In part (b) the absol:pt_on _:oeffi,:i.,-:_r_t::is

given by the relation _ = Ch 7 where C = (h*)72"71 arid

7 = 71 = 4 for h < h , and C = i and 7 = }_.-.:.....I i'_._"i: ".}:

_is model should be used when the shock layer t_D,_i_,,_ e_ _,°_: :_

excess of about 20,000 ° K since at moderate al.__v_dcs I_ (gl,c

enthalpy at which the exponent 7 changes value) cor_-e:,!',o_dsto

temperatures of approximately this value. The ef1"ecC_ _f ,.,r_._L_:

These values of 7 are typical for air a_ _emp_r_O,-_, _s ._:s_

than about 20,000 ° K (see chapter l!, section E ).
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Figure 4.3.- Effect of the enthalpy dependence of the absorption

coefficient on the enthalpy distribution in an optically

thin shock layer.
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h are shown in figure 4.3b. A decrease in h produces a decrease

in the enthalpy level because 7 takes on the smaller value (-i)

throuohout a greater portion of the shock layer.

The effect of surface reflectivity r on the entha]py dis-
w

trlbution is shown in figure 4.4. Of course, this effect varnishes

in a transparent layer. With a small amount of absorption an increase

in reflectivity brings about an increase in enthalpy level w_th the

greatest increases occurring adjacent to the wal]_ These results

corroborate the findings of chapter III.

The variation with the radiation cooling par_eter c of the

rate of radiant heat transfer to the wall for various values of the

Bouguer number is presented in figure _'_.5- Also shown on this figure

are two limit curves. One of these curves is labeled the "no decay

limit" and was computed by assuming that the shock layer was

isenthalpic and transparent. The second limit curv_ _s _i_beJed the

"available energy limit" because it represents s_ upperbound to the

radiant flux on the basis of energy balance. The sJ_o_t of _j

entering the shock layer per unit time per ur_It _z_a of _e _ _

surface has been normalized to unity. If all of _his eL_gy is

radiated out of a transparent shock layer only ohe_half will be

incident on the wall.

The curve labeled kp = 0 shows the effect of "defray '__

reducing the rate of radiant heat transfer to the ,_a]l. The _em_n!_&

curves indicate the important effect of abso_ption (as charactcrlz_d
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Figure 4.4.- Effect of surface reflectivity on the enthalpy distribution

in an optically thin shock layer.
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here by the Bouguer number kp) in reducing the rate of radiant heat

transfer to the wall. Although values of kp presented in figure h.9

are as large as 3, the corresponding shock layers are all optically

thin (kpT& << I).

The effect of the enthalpy dependence of the absoI_tion coeffi_

clent on the rate of radiant heat transfer to the wall in a transparent

shock layer is shown in figure 4.6. It is apparent that an increase

in the exponent 7 (which appears in the ..... _ ........ _- _7_

magnifies the effect of decay on the rate of radiant heat transfer.

The effect of the radiation cooling parameter ¢ on the shock

standoff distance for various values of the Bouguer number kp and

7 is shown in figures h.7(a) and &.7(b). As expected, an increase

in e reduces the value of A (the ratio of shock standoff distances

with and without radiation) for given kp and _ because the

cooling by ra@Jation tends tc incre_e the _e_:!ri[,_]evel __n _he _hc_ k

layer. Increases in kp and 7 for fixed e ir_ibits the effect

of decay on A whereas these increases magnified the effect_ of

decay on the rate of radiant heat transfer.

Tq_e variation of shock layer optical thickness k p_ wi_h [}-_,

radiation cooling parameter e and the Bouguer nLunber kp is

shown in figure 5.8. When the absorption coefficient varies as a

positive power of the en_halpy, the shock layer cptica] thickn_s_

may be very much less than one even if the Bouguer number is order

of magnitude one or greater provided that e is _ufficient]y i_rge_
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The criterion for the validity of the analysis presented in this

chapter is that the optical depth of the shock layer be much smaller

than one for those wavelength regions in which a significant amount of

radiant energy is transported. It has been shown herein, for the

case of a gray gas for which the absorption coefficient is proportional

to a positive power of the enthalpy, that this condition is always

less restrictive than the condition that the Bouguer number, _, is

very much less than one. However, for the more realistic case of a

nongray gas the criterion stated above is generally more restrictive

than the condition _ << 1. In mathematical terms the criterion

implies the inequality

2(i÷rwl /o dR << 1 (_.3_)

The _uantity on the left-hand side of the inequality is the first-

order term in the expansion of I[_, the divergence of the radiant

flux vector, in terms of the Bouguer number, kp. When both _h and

Bk are proportional to a positive power of the enthalpy an upper-

bound to the aforementioned quantity can be obtained by replacing

_(_), _h(_), and Bh(_) by their values at _ = _, immediately

behind the shock. The result is
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If the same substitution is used for a gray gas the result is simply

_en the nongray step function model for the abso_ption coefficient

of air, which was used in chapter III (see fig. 3.10), is used to

evaluated the quantity (2_.3_) the result is about 60 tim_s greater

than the corresponding gray quantity (k.36). Thus_ the criterion for

the validity of the optically thin analysis, in this nongray example,

is

6o kp << 1

for small values of the radiation cooling parameter ¢. For larger

values the criterion could probably be relaxe_ _m_at If_r _amp_

60 kp v_<< 1). As a result of this criterion the pzactical

applicability of the optically thin analysis (and ¢_nsequently of

all transparent analyses) is seriously restricted.



C_ V

THE OPTICALLY THICK SHOCK LAYER

A. The Optically Thick Approximation

A qualitative description of the optically thick shock layer has

been given by Goulard (ref. 5). He pointed out that this layer is

characterized by an isothermal region between two thin boundary layers

adjacent to the shock and the wall. The boundary layer in_nediately

behind the shock is a result of the cooling of the hot gas by radia-

tion through the transparent shock. Because radiation travels only a

short distance before being absorbed in an optically thick layer, this

energy loss is restricted to a narrow region which extends approxi-

mately a photon mean free path. Once this initial adjustment in

energy has occurred the gas particle is carried into the interior of

the shock layer by the flow where convection is the dominant mode of

energy transport. In this region, the enthalpy of the gas is es-

sentially constant. As the particle nears the cold wall, moving ever

more slowly as it does so, convection becomes of decreasing importance

and energy transfer by radiation begins to assume the major role.

Finally, in the immediate vicinity of the wall all of the energy

transport proceeds by means of radiation. When the emissive power

in the interior (or isothermal portion) of the shock Isyer is larg_

the take-over by radiation occurs at greater distsmces from the w_l!

than if the emissive power is small. Thus, the thickness of the w_l]

134
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boundary layer depends not only on the optical thickness of the shock

layer but on the emissive power of the gas as well.

_Waile the shock layer is optically thick, the boundary layer

behind the shock is not and so the Rosseland or diffusion approxi-

mation so commonly used in the study of optically thick gases cannot

be applied in this region. The Rosseland approximation is valid

only in regions of an opaque gas which are at great optical distances

from all radiation boundaries (a perfectly reflecting barrier is not

a radiation boundary) and in which the thermodynamic and optical

properties do not vary greatly within a photon mean free path.

Neither of these conditions are met in the shock boundary layer.

The conditions of validity for the Rosseland approximation

might hold throughout much of the wall boundary layer if the emissive

power of the gas is sufficiently large. However, the approximation

must break down optically close to the wall. q_e ase of a tempera-

ture jump boundary condition as suggested by several investigators

(refs. 27, 91, and 72) has proven successful in problems of radiant

and combined radiant and conductive energy transport. _q%ether or

not thls concept can be applied wlth equal success to problems of

combined radiant and convective energy transport .has not, as yet,

been demonstrated. In a region optically close to a radiation

boundary the temperature predicted through the use of the Rosseland

approximation and a sllp boundary condition represents not the

temperature of the molecules of the gas, but a sort of average
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photon temperature. The convective heat flux depends on the

molecular temperature. Thus, it is not clear that the slip

boundary condition can be used in a problem of combined radiant

and convective energy transport. There is a basis for optimism

when considering the problem of this chapter, however, in that

the convective flux may be negligible compared to the radiant

flux optically close to the wall.

In order to arrive at a solution to the problem of the

optically thick shock layer, the substitute kernal approximation,

introduced in the previous chapter, will be used. It _Iii be

sho_n that in the interior of the shock layer and close to the

wall, but not in the shock boundary layer, this method is equiva-

lent to using the Rosseland approximation with slip boundary

conditions. The use of this approximation will restrict the

analysis to gray gases.*

B. The Substitute Kernal Approximation

In this and the subsequent chapter, it will be convenient to

1_ewrite the energy equation (equation 2.70 of chapter If) }zith the

optical path length • as the independent variable, that is

f(T) h'CT) + _I[T] = 0 (9.i)

*This restriction is not a condition for application of these

approximations, but has been invoked here to avoid the considerable

additional complication that relaxation of this restriction would
incur.
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Here, f is the nondimensional stream function, h the nondlmensional

enthalpy, and ¢ the radiation cooling parameter. _ne divergence of

the radiant flux vector, I[v] is given by the expression

lIT] = _l I[_] = - 2B(v) E2(O ) + _ B(t) El(kplV - t

• 2kp r w E2(_, ) /0 B(t)E2(_t )dt (5.2)

where T is the nondimensional absorption coefficient, B the

nondimenslonal Planck black-body function, kp the Bouguer number,

rw the reflectivity of the wall (at v = 0), 7A the value of the

optical path ler_th at the shock, and _ and E2 the exponential

integral functions of first- and second-order, respectively.

In order to simplify the analysis the substitute kernal

_pproximation _;ill be used. For the optica2ky thick shock layer,

appropriate substitution for E2(x) is found to be (3/4) e"(_/2)xthe

This substitution satisfies the conditions that the areas under the

two functicns over the domain 0 _ x _ _ _re e.qu_l az_d that the

expression for the radiant flux approach the Rosseland expression

as x increases without limit.

if the expression for the radiation flux is differentiated

t_ice with respect to T the integral terms c_u be eliminated

with the result



The energy equation (5.1) can then be used to eliminate lIT].

(5.4)

This alternate form of the energy equation is a third-order

nonlinear ordlr_Lry differential equation the solution of which must

satisfy the condition h(1) = 1. _o additional constants of

integration are introduced by the solution of (5.4). These constants

are determined by satisfying appropriate physical conditions or by

satisfying the original integrodifferential equation (5.1).

An expression for the flux of radiant energy which enters the

wall can be obtained quite simply. The expression for the flux

incident on the wall is

R j0TA _3kp t% = _ _ B(t)e 2 dt
l-r w

When the integrodifferential form of the ener_ e_ation (5-]-)

is evaluated at v = O, it becomes (since f(O) = 0 is a boundary

condition)

TA 3 9ptB(0) - _ k? (i + rw) B(t) e- 2 dt=0
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Q

Thus the flux entering the wall can be written in terms of the value

of the black-body emissive power of the gas adjacent to the wall,

that is

3. Boundary Layer Analysis

In terms of the substitute kernal approximation, the complete

differential system governing the flow in the stagnation region of

a radiating shock layer is

Lf(,)h'(,_" - _¢ B"(v) - _# f(,)h'(v) = 0 (5.6)

2f(q)f"(_) - Cf'(q)_ 2 + a2 h(n) = 0 (9.7)

f(o) -- o (_.8)

a (.5._o)
_'(%) -- V_×(_- ×)

jj_ - _-It- _1½f(T)h'(T) + e kp B(t)e 2 dt

_B(_) +_$r2 w
e B(t)e dt

(5._2)

=0
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When the optical thickness of the shock layer is such that

I_ >> i and _ >> ¢

equation

equation (5.6) becomes asymptotic to the

f(_)h'(_)--o (5.13)

Thus, the enthalpy approaches a constant. It can be shown by

attempting to satisfy equation (5.12) as a condition, that this

solution is valid only at large optical distances from both the

shock and the wall (unless it is a perfectly reflecting wall). It

also becomes clear that the value of this constant, hereafter

denoted h2, cannot be determined without knowledge of the shock

boundary layer.

If the enthalpy throughout most of the shock layer is constant

with a value h2, the density will be constant also with a value

P2" in this case, the momentum equation may be easily solved with

the result

2

f(n)= i - a_A + a_h. '_ (_.l_)

A first approximation to the shock standoff distance is

A (Ps/P2) X h2 X
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In addition to the region of constant enthalpy in the interior

of the layer, there are two thermal boundary layers; one immediately

behind the shock and the other adjacent to the wall.

The forms that the energy equation assumesin these boundary

layers can be determined by meansof conventional boundary layer

techniques. In the vicinity of the shock the "stretched" coordinate

is introduced. Close to the shock the quantity f(v) is slowly

varying and maybe adequately represented by the first term in the

Taylor expansion about _ _ O, that is

Substitution of equation (9.16) and equation (9.17) into the energy

equation (9.6) gives the shock boundary layer equation

,(
h"({) + 23-_B 6) - _ h({) = Const

(}.la)

Solution of this equation is complicated by the nonlinear term

(312) _ B'(_). If _ is at least an order of magnitude less than

I_, this term can be neglected and the solution to equation (5.18)

easily found. This solution is

3

h(_) (I h2)e" _ _= - + h.. (5
• >m " "
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The constant h2 can be determined by writing an energy

balance across the shock boundary layer. This energy balance is

3_
E pc@ . m

i = h2 + 3C- Jo B(_)e 2 d_
_ _p

(5.20)

When ¢ << kp condition (5.20) reduces to

I E

h 2 _I

and it is apparent that h 2 approaches one and the boundary layer

ceases to exist. Thus, there cannot be a shock boundary layer with

a thickness characterized solely by the optical path length in the

gas.

An approximate solution to the boundary layer equation (5.18)

can be obtained if the nonlinear term (3/2) _B'(_) is replaced

by an appropriate linear term, for example

where the constant B is arbitrary and represents a mean variation

of the black body emissive power B with h over the range of

values of h encountered in the shock boundary layer. The line-

arized version of equation (_.18) has the simple solution

h(_) = (1- h2)e'C°l_ + h2 (5.21)
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where

where ¢/kp

equation (5.20). When

solution takes the form

E

h(_) = (1- h2)e" _ B_

(5,22)

is very much less than unity this solution reduces to

¢/k_ is very much larger than unity, the

+ h 2 (5.23)

and, in this limit, the thickness of the shock boundary layer is

determined by the parameter ¢-1 instead of simply _l. Thus,

the shock boundary layer can be very much thinner than a photon

mean free path if the black body radiative power behind the shock

is large. This effect was shown by Heaslet and Baldwin (ref. 31)

in their study of radiation resisted shock waves. Simply stated it

means that a particle starting immediately behind the shock loses

energy at such a rapid rate by means of radiation that it is

substantially cooled in the time that it takes to travel only a small

portion of a photon mean free path.

A value for the constant B can be obtained from the condition

2 3 ¢ (1 . h2)_l _ 1_(1 . h2) = 0 (5.24)(1h )°l

This condition was derived by integration of the nonlinear energy

equation (5.18) between the limits zero and infinity and substitution
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into the result of the linearized solution (5.21). In addition, the

correlation formula B h 5= was used. It was shown in chapter II

that 5 _ 2.2. However, the ensuing analysis will be greatly simpli-

fied, without any significant loss in accuracy, by setting 5 = 2.

A second condition is required to uniquely determine the enthalpy

distribution in the shock layer. The energy balance relation (_.20)

evaluated with the aid of the linearized solution provides this

condition, _hich is

2

The quantity _l can be eliminated between the conditions (5.2h)

and (5.25) resulting in an expression for h2 the enthalpy level

in the interior of the shock layer, as a function of e/l_. The

result of this calculation is presented in figure 5.1.

The thickness of the shock boundary layer (in terms of optical

path length) is characterized by the parameter 1 . A plot

of _l as a 1_nction of ¢/kp is presented in figure 5.2.

As has been indicated previously, there is also a thermal

boundary layer due to radiation adjacent to the wall. If this boundary

layer is thin, which shall be assumed, herein, the dimensionless

stream function f(T) may be represented by the first few terms of

its McLaurin expansion
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_(',) _ f(o)+ ",f'(o)

Employing the kinematic boundary condition (5.8) and the asymptotic

solution for f(_) Equation (5.1h) one finds

....... . = bT_(_) _ T _ , (_.26)

Of the several approximations introduced in the analysis of' this

chapter this is perhaps the poorest because the requirement that the

wall boundary layer be thin _vlth respect to the optical path length T

does not necessarily imply that it is thin with respect to either the

Dorodni_syn coordinate _ or the geometric coordinate z.

Substituting this expression into the energy equation (5.6),

introducing the "stretched" coordinate

snd neglecting terms of order k_/2 yields the boundary layer equat;_on

_"(_) +_b_ h'(_) o (_5

In general, equation (5.28) is nonlinear and does not possess an

anal_,ic solution. A simple approximate analgesic solution can be

obtained by replacing the quantity h'(_) with b$'(_), where h

is an as yet undetermined constant. This substitution reduces

equation (5.28) to the linearized form
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B"(_) + _2 _ B'(_) --0 (9.29)

where

=

T--hesolution to equation (9.29) is easily found with the result

(5.5o)

The quantities B , the nondimensional black body emissive powerw

of the gas adjacent to the wall, and _2 (because it contains the

arbitrary constant K) are still unknown. One condition for evaluating

these quantities can be obtained by integrating the nonlinear boundary

layer equation (9.28) with respect to _ between the limits zero and

infinity. In performing this integration, it is convenient to

eliminate the term B"(_) in equation (9.28) _.rith equation (9.29).

Then it is found that

h2 - h
- _, 1 (5._2)
h = B2 Bw = h2 + hw

Here B2 is the nondimensional black-body emissive po_er of the gas

in the interior of the shock layer and h is the nondimensional

enthalpy of the gas adjacent to the wall. The last equality in

expression (5.32) holds because it has been assumed that B = h 2.
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The second condition is obtained by evaluating the integral

condition (5.12) at T = 0. Written in terms of the boundary layer

coordinate _ this condition becomes

3
(5.33)

Substitution of the linearized solution for B(_) into equation (5.33)

and integration yields

If+ erfc
B = _2 (5.34)

erfo
-_ + l+rw)-

Equations (5.30) and (_.32) can be used to eliminate _2 from

equation (5.34) yielding a transcendental equation for the value of

the black body emissive po_er at the wall B •
w

The variation of B as a function of the radiation cooling
W

parameter to Boug_er number ratio, ¢/kp for variou_ values of kp

and the exponent 7 (from the correlation fo_n_la _ = h 7) _s

shown in figure P.3. This curve has particular significance because

the ratio of radiant heat transfer to the cold _all is directly

related to B through expression (_-5). The va_iation of the

quantity _2 (eq. (5.30) wlth these same parameters is presented

in figure _._.
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D. The Rosseland Approximation

The Rosseland or diffusion approximation is frequently used in

the study of problems in which the medium is optically thick. As

was pointed out earlier this approximation is not valid in regions

optically close to a radiation boundary or in regions in which the

optical and thermodynamic properties vary significantly within an

optical path length. Some investigators have attempted to correct

the former deficiency through the use of temperature Jump boundary

conditions and have achieved considerable success in problems of

pure radiant or combined radiant and conductive energy transport.

In this section, an attempt wlll be made to use the Rosseland

approximation and temperature Jump boundary conditions to analyze

the optically thick shock layer. It is hoped that this exercise

will provide some insight into the attributes and limitations of

this approximation in problems of combined raaiant and convective

energy transport.

Wlth the Rosseland approximation for the divergence of the

radiant flux, the energy equation becomes

B"CT) + = 0
2 ¢

This equation is the same as equation (9.6) except for the omission

of the third-order differential term _(v)h'(7_

In the interior of the optically thick shock layer, equation

(9.36) reduces to

(9.36)
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6

f(T)h'(T)= 0

C

provided _ _ . This result is identical to the result obtained

by means of the substitute kernel approximation. This agreement is

not surprising because the diffusion approximation is known to be

valid in this region. Of course, the value of the constant enthalpy

in the interior of the shock layer cannot be determined until some-

thing is known about the shock boundary layer.

If the usual type of boundary layer analysis is applied to the

energy equation in the Rosseland approximation (_.36) for the

neighborhood of the wall the result is

This equation is identical to the wall boundary layer equation in

the substitute kernal analysis. Two boundary conditions are

required to completely determine the solution to this equation.

One of these conditions is

.llm =

Here B2 is the black-body emissive power of the gas in the interior

of the shock layer. The second is the jump boundary condition,

written in terms of the black-body emissive power B rather than

the temperature.
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The second equality follows from the expression for the radiant flux

in the Rosseland approximation. The constant C is usually

evaluated by requiring the flux to be correct in the black-body llm_t

(see, for example, ref. 29). However, it is noted that condition

(5.37) is identical to the condition used in the substitute kernal

approximation (i.e. (5.33)) if C is chosen to be

Thus, the results obtained in the wall boundary layer by the two

methods are identical if C is chosen to satisfy (5.38). It has

been sho_n that the two methods also give identical results when

applied to the problem of combined radiative and conductive energy

transport between two infinite parallel plates separated by a radi-

ating and conducting gas (ref. 29).

If the usual boundary layer analysis is used to obtain the

boundary layer form of the energy equation in the Rosseland

approximation for the neighborhood of the shock the result is

B'(_) - 2_ I_-_l h(_) = Const (_-39)

This equation is not identical _Ith the shock boundary layer equation

in the substitute kernal approximation because of the omission of the
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thlrd-order differential term. Inspection of equation (5-39)

indicates that any solution other than the trivial solution

h(_) = h2 _lll not tend to a constant h2 as _ becomes very

large. Thus equation (5.39) cannot be forced to simultaneously

satisfy the conditions h(o) = 1 and lim h(_) = h2 •

Apparently then the jump boundary condition at the shock must be

h(o) = h2, but this result leads nowhere as there is insufficient

information to accurately determine h2.

It must be concluded then that the Rosseland approximation

with sllp boundary conditions is not sufficient by itself to be

used in the analysis of the complete shock layer. It can be used

in the combined radiation and conduction problem because the two

separate energy fluxes are represented by similar mathematical

models and m_y be treated as an equivalent radiation alone or

conduction alone problem. Even in this case, it is not possible

to obtain a temperature distribution nor to separately determine

the radiant and conductive fluxes optically close to a boundary.

In the combined radiation and convection problem, this inability

to determine a temperature distribution or to separate the radiant

and convective fluxes optically close to a boundary (such as a

transparent shock) where convection is important presents a

serious obstacle to solution because the convective flux depends

on the unknown temperature (or enthall_y) distribution.
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E. Results and Discussion

The analysis presented in this chapter applies only when the two

enthalpy boundary layers are thin compared to the shock standoff

distance with these distances expressed in terms of the Dorodnitsyn

variable _. When ¢/_, the ratio of the radiation cooling

parameter and the Bouguer number, is much less than one, the

thickness of the shock boundary layer is characterized by the inverse

of the Bouguer number, _l while when ¢/kp is large the shock

boundary layer thickness is characterized by the inverse of the

radiation cooling parameter, ¢-1. The thickness of the wall boundary

- 2_i/2

layer is characterized by the parameter (¢/_) .Thus, the most

restrictive conditions on the applicability of the optically thick

analysis are that _ >>i for e small and _ >> ¢1/2 for ¢

large.

Several enthalpy distributions were calculated with the formulas

developed in the preceding section. The results are presented in

figures 5.5a and 5.5b. The previous discussion of the effects of the

parameters on the thicknesses of the boundary layers is substantiated

by these results. The effect of the Bouguer number, _, and the

radiation cooling parameter to Bouguer number ratio, g l_ on the

shock layer optical thickness _VA is also shown. The effect of

¢/_ depends on the enthalpy variation of the absorption coefficient.

In the cases shown the absorption coefficient is proportional to the

fourth power of the enthalpy and an increase in ¢/kp brings about a
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Figure 5._.- Effect of the parameters _/kp and kp on the enthalpy

distribution in an optically thick shock layer.
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b

reduction in the shock layer optical depth. The value of the

enthalpy of the gas adjacent to the wall (which is related to the

ratio of radiant heat transfer to the wall through equation (5-_)

and the correlation formula B = h2) decreases with increasing

 d/or
The effect of 7 (where 7' is the exponent in the correlation

formula a = h7) and the surface reflectlvity rw on the character

of the wall boundary layer has not been shown but can be readily

deduced from the curves of figures 5.3 and 5.4. Increasing % tends

to reduce the optical thickness of the wall boundary layer and

increase the value of the enthalpy of the gas adjacent to the wall.

It can be shown that the wall boundary layer thickness expressed in

terms of the Dorodnitsyn coordinate _ is only slightly effected

by a change in W. Increasing the surface reflectlvity r tends
w

to increase the optical thickness of the wall boundary layer and

increase the value of the enthalpy of the gas adjacent to the wall.

When expressed in terms of the Dorodnitsyn coordinate _ the

boundary layer thickness decreases with increasing r • These
w

results are consistent with the results of Chapter 3.

The manner in which the rate of radiant heat transfer to the

R
wall, qw' depends on the radiation cooling parameter to Bouguer

number ratio, _/_, the Bouguer number, kp, the variation with

enthalpy of the absorption coefficient (through the exponent 7 of

the correlation formula _ = hT), and the surface reflectivity, rw,

is indicated in figures 5.3a to _.3b. For fixed values of _, 7,
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R

and rw the rate of radiant heat transfer to the wall, qw '

increases with increasing ¢/_. It appears that _ would

become asymptotic to the available energy limit of 1/2 as

_I_ increased without limit. As the Bouguer number, kp,

increases (hence increasing the shock layer optical thickness),

all other parameters remaining fixed, the value of _ decreases

and becomes asymptotic to zero. This is the same trend exhibited

in the problem of radiant energy transfer between two plane

parallel walls separated by an absorbing and emitting, but

motionless and nonheat conducting gas (see, for example, ref. ll).

Increasing 7 while holding the other parameters fixed results

R

in an increase in qw" This trend is the reverse of that for a

transparent shock layer (see fig. 4.6). The results of Chapter 3

(see fig. 3.6) show that this reversal occurs at intermediate

values of the Bouguer number _. Finally, it is apparent from

figure 5.3 that an increase in surface reflectivity rw for fixed

R

values of the other parameters results in a decrease in q . The

R
change in qw with rw satisfies the inequality

%_l-r
r = 0
W

which agrees with the physical argument presented in section 4 of

chapter III.
b
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T_RAD_T_ND_L_ SH_K _

A. The Strong Radiation Approximation

_,2nenthe radiation cooling parameter _ is very much greater

ths.u both one and _2 +_ _,_,_ _o_ _,o_a _ _i_

leaving the shock with an initial enthalpy of _ _ will emit

radiation at such a rapid rate that it will lose a significant

amount of its energy before traveling the distance of a photon mean

free path. Because this energy is emitted in a region of small

optical thickness adjacent to the transparent shock most of it will

escape from the shock layer, and the enthalpy level within the shock

layer will be quite small in comparison to the value at the shock.

In fact, as will be shown subsequently, the zero-order solution for

the enthalpy in the interior of the shock layer is identically zero.

It is for this reason that the term "radiation depleted shock layer"

has been coined. Of course, the narrow region adjacent to the shock

in _hich the large change in enthalpy occurs can be described as a

boundary layer and boundary layer techniques can be applied to obtain

solutions in it.

The conditions which must hold in order that there be a radiation

depleted shock layer, that is ¢ very large and _ not too large,

occur at high altitudes for rather large objects (shock radius greater

than 1 meter) entering at extremely high speeds (entry speeds close

to 70 !_n sec). It is not at all clear that the requirement for

167
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chemical equilibrium can be satisfied under these condition, particu-

larly in view of the existance of a shock boundary layer in which

large changes occur over a short distance, and hence, a short time.

Dispite this objection, the solutions for the radiation depleted shock

layer represent an interesting limiting case which should lead to an

increased understanding of the radiating shock layer and provide a

firm base for extension into areas of more practical concern.

B. Analysis

Once again, as was the case for the optically thin and optically

thick shock layers, analysis can be facilitated through the use of

the substitute kernal approximation. In this case, the energy equation,

_ritten in terms of the optical path length, is

(6.1)

Here f is the nondimensional stream function, h the nondimensional

enthalpy, B the nondimensional black-body _nissive power, ¢ the

radiation cooling parameter, kp the Bouguer number, and • the

optical path length. It should be remembered that use of this e_lation

restricts the analysis to gray gases only. The boundary conditions on

the enthalpy are, as before

) : l (6.2)

and the integral condition
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f(v)h'(,) - _¢ (r) - _ kp do B(t)e- _ _lt'_l dt

3" _ TA B(t)e" _-_is_ r e d =0
z._ Jy.

(6._)

.2

, was chosen for simplicity. Somewhat greater

accuracy night be achieved by lettinf_ _;he constants depend on the

_)pt_cal depth _T A. However, it was not felt that this procedure

woILld lead to a better understandinc of the ra_liatlon depleted shock

layer.

The momentum equation, in te_nns of the Dorodnitzyn coordinate,

and the boundary conditions on the nondimensional stream function

_re

2

f(o)= o (6._)

II
#(q_)= z (6.63

× ,f_×(1- x)
(6.T)
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_,_en the radiation cooling parameter ¢ is very much greater

2
than one and :qp the energy equation (6.1) admibs the asymptotic

solution

_(T) = cI + c2 T (6.<_)

Substitution into the as3,_ptotic form of thc integral condition

(6.3) reveals that each of the two constants muzt be identically zero.

_Fnus, in the interior of the shock layer B('r) _l h(T) are zerc.

In this case, the density is infinite and the momentum equation can

se readily solved for f(_) with the result

f(_)= (6.9)

and, of course, the shock standoff distance tends to zero.

In order to investigate the shock boundary layer, it is

convenient to introduce the "stretched" coordinates

_ = (TA - T) _-n

and

_ = (_A- _) Cn

into the energy and momentum equations, respectively.

the usual nmnipulations (details are presented in appendix D) shows

-1
that the boundary layer is characterized by the parameter ¢ and

it would seem proper to expand both the boundary layer and asymptotic

solutions in power series of this small par_%meter. However, fa(_)

(6.10)

(6.11)

Performing
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(where the subscript a indicates the asymptotic solution valid _ar

from the shock) is not analytic in ¢-1 near c"l = O, but is

analytic in ¢-1/2. Consequently, the solutions must be expanded

as po_¢erseries in ¢ 2.

_ne lowest-order form of the energy equation in the boundary

layer is

B,b (_) + 3 Bb (_) = Cl + C2o o
(6.12)

The subscript bo

layer solutions.

that both Bb (_)
o

limit. Thus_ the constants C1 and

has been used to denote the zero-order boundary

This equation must satisfy the boundary conditions

and B_ (_) vanishes as _ increases _ithout
o

C2 are both identically zero.

The third condition to be satisfied is

Bb (0): 1 (6.13)
o

The solution to equation (6.12) subject to the boundary conditions is

R

b
o

Solution of the momentum equation in the boundary layer gives

the zero-order form of the nondimensional stream function

(6.19)
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These zero-order solutions can be used to generate solutions

of hi_iher order. Mathematical details are presented in appendix D.

In _[eneral, the analysis follo_s the procedure outlined by Van Dyke

&_ .*

A complete listing of these solutions up to second-order in the

parsmeter -1/2 is presented belou.

Zero-order solutions.-

B (_): 0 (6.1_)
a
o

a o

(6.1_)

0

(6.1_)

(6.19)

0

2V2×(I-×)
8,

_. m

0

O

_i(o)

(6.20)

(6.21)

First-order solutions.-

B (_):o
aI

(6.22)
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r (_)
aI

(6.23)

(6.24)

(6.25)

_ah : _a (o)
(6.26)

(6.27)

o

Second-order solutions.-

B
a 2

2fa2(Tt) U_''m2_°) -qT-oj-A_n q_o)

+

(6.2S)

(6.29)
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;,'here

f n. "_2r-

n_2 "_h°
+ (6.30)

_A,-----T--+'_
_ (o) o

+

-LI,-777_ _a2(° + "_'_o]

(6.31)

41w¸

b_

Rmdiant heat-flux and standoff distance.- The total radiant heat

R
flux to the wall _I and the ratio of the shock standoff distance to

the shock standoff distance for radiationless flow _ are given by

the following expressions.

R

% l
1 - r

w

(6.32)
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(6.33)

C. Results and Discussion

In the analysis of the preceeding section, it was convenient to

use the black-body emissive power B rather than the enthalpy h as

the dependent variable. This choice necessitated the assumption that

thermodynamic and optical properties (in particular h and _l)the

be analytic functions of B in the interval (O,1). Unfortunately,

this condition does not hold for the correlations of chapter II

written in terms of B in the limit as B approaches zero. This

difficulty can be circumvented through the use of analytic approxi-

mations to the correlating functions. For example, the enthalpy

might be approximated by the function

where

expression (6.18) results in the following solution for

h = (B + B*)I/2 (6.3_)

B* is a very small positive number. Use of formula (6.3_) in

O

(6.35)
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_,:here

C __ (6.36)

r_ ._ l_,_ _r_l_1_ _.P _ _-%_. _

the value of B b (_) is directly proportional to B. It is clear

. O

then that B should be chosen sufficiently small to insure that

Bb (_) is nearly independent of B for values of Bb as small as
O O

Because of the unlikelihood of establishing local thermodynamic

and chemical equilibrium in a physical shock layer under those

conditions for which this model analysis is supposed to apply, it

would be somewhat superfluous to present the resists of detailed

calculations for the enthalpy distribution and shock standoff

distance. Suffice it to say that the shock layer is characterized

by an enthalpy boundary layer immediately behind the shock the

thickness of which (in terms of the Dorodnitsyn variable _) is

characterized by the inverse of the radiation cooling parameter ¢-1.

It should also be pointed out that the shock boundary layer is always

very much less than a photon mean free path and hence is always

optically thin. The enthalpy level in the interior of the shock

layer is order of magnitude _/¢. The ratio of the shock standoff
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distance to the shock standoff distance for radiationless flow is

-1
order of magnitude c .

Curves representing the magnitude of the radiant heat flux which
R

is absorbed by the wall _ are presented in figure 6.1. In the

kp << l) the radiant heat flux approachesoptically thin limit T_O
J

(i i/2. As the optical thicknessthe "available energy limit" of - r

of the wall increases and absorption becomes more important, less of

the energy emitted from the gas in the shock boundary layer in the

direction of the _mull is able to penetrate the shock layer and reach

the wall before being absorbed. Part of what is absorbed is then

reradiated in the fo_rard direction and escapes from the shock layer

through the transparent shock. Finally, as kp TA tends to infinity
O

none of the energy e_tted in the shock boundary layer reaches the

wall and the radiant flux incident on the wall vanishes.



178

I

b
(D

CO

>

I

(D

II

O

II

! , I

c_

co
CD

O

O

O
o

CD

II

_]

o

o
O

O

+_

0

%

+._

I1)

*M

I

,.S

,M



m-

CHAPTER VII

RADIATING SHOCK LAYERS

A. Discussion of the Approximate Solutions

Four different approximate stagnation point solutions for an

inviscid, radiating shock layer were obtained in preceding chapters.

Each one represents a limiting case for some combination of the

radiation cooling parameter c and the Bouguer number kp. The

regions of validity of the approximate solutions are depicted in

figure 7.1. The boundaries as drawn pertain only to a gray gas

with constant absorption coefficient. It would be necessary to redraw

the boundaries for each nongray gas and for every change in the

enthalpy dependence of the absorption coefficient. As was pointed

out in chapter IV, the criterion for validity of the optically thin

solution is that the gas layer be optically thin in all wavelength

intervals in which a significant amount of energy is transported by

radiation. For a gray gas, this means _TA << i. Thus, the

boundary is not specified completely by kp but varies with E as

well (since kpT_, the shock layer optical thickness depends on c

as well as _ when the absorption coefficient is a function of the

enthalpy). When applied to a nongray gas, the criterion for

validity of the optically thin solution is always more restrictive

than the condition that the Planck mean optical depth be small. Thus,

the boundaries for all nongray gases will be displaced to the left

of the boundary for the "Planck-equ_valent" gray gas. A "Planck-

equivalent" gray gas is one in which the wavelength independent

179
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Figure 7.i.- Radiating shock layer regimes.
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absorption coefficient is equal to the Planck mean absorption

coefficient in the nongray gas.

The location of the boundary for the sr_all perturbation

approximation depends on the radiation cooling parameter ¢ and

the enthalpy variation of the absorption coefficient. The value

of e for _hich the solution _ll yield results of a given accu-

racy is reduced with an increase in 7 (where 7 is the exponent

in the correlation formula _p = h7), because o_" the reduced

accuracy of the truncated expansion for _p (equation (B-$3) of

appendix B). Since the small perturbation solution was shown to

be con-ect to second-order throughout most of the domain of the

problem the condition for establishing the boundary is E2 << 1.*

The location of the boundary does not depend on the _lavelength

dependence of the absorption coefficient.

The most restrictive condition limiting the validity of the

optically thick analysis for moderate values of the radiation

cooling parameter e is the thickness of the enthalpy layer

adjacent to the shock. This thickness is characterized by the

inverse of the Bouguer number 1/_. Thus, the criterion for

validity is kp >> 1. For larger values of ¢ the condition

-----_(c/_ll/2<<l becomes more restrictive and must be used to

establish the boundary. This latter condition insures that the

enthalpy boundary layer adjacent to the wall is thin compared to

*This condition holds when 7 = O. _en Y = $ the proper
condition becomes lO ¢2 << 1.
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the shock standoff distance. The analysis presented in chapter V

is restricted to the case of a gray gas but could be extended

rather simply to the case of an absorption coefficient _ith a step

function dependence on wavelength for _hich the step heights are

either _(h) ap(h) or zero. There is no restriction to the

number of w_dth of the steps. The only changes that would appear

in the formulas would be the substitution of m(h) _p(h) for ap(h)

and B(h)/_(h) for B(h). The boundary to the region of validity

of the optically thick shock layer analysis would be displaced to

the left for this particular class of nongray gases.

The region of validity of the radiation depJeted shock layer

analysis is restricted by the conditions _ >> 1 and ¢ >> _.

The first condition insures that the thickness of the enthalpy

boundary layer adjacent to the shock is small compared to the shock

standoff distance, while the second condition insures that radiation

is the preponderant mode of energy transport within the shock layer.

Like the analysis of chapter V_ the radiation depleted shock layer

analysis is restricted to gray gases but can be extended to the

nongray model absorption coefficient with multiple steps of uniform

height. Use of such a nongray model would cause a leftward shift

in the boundaries to the region of validity. Of course, the regions

of validity of both the optically thick and radiation depleted shock

layer analyses must vanish for all other classes of nongray gases.

In order to relate the radiation shock-layer regimes to the

problem of entry into the atmosphere of the earth, several
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trajectories are indicated on the ¢ - kp map presented in

figure 7.2. The arrows indicate the direction of increasing time.

Trajectories 1 and 2 represent iron spheres of radius 1 meter and

1 centimeter, respectively, entering vertically with an initial

velocity of 70 km/sec.* Trajectories for all other objects of

the same size and lesser or equal initial velocities must lie below

them in the ¢ - _ space. The third trajectory corresponds to

the entry of a round-trip Martian probe which would encounter some

of the more severe heating conditions of the currently envisioned

class of manmade objects. It is apparent that the small pertur-

bation approximation has considerable utility for the analysis of

radiation effects on the entry of manmade objects. It also appears

that the optically thin shock layer analysis might enjoy wide

applicability. However, in the more realistic case of a nongray

gas the boundary would be shifted to the left one or two orders of

magnitude in the Bouguer number kp, considerably reducing the

practical usefulness of the optically thin approximation. The

optically thick and radiation depleted shock layer analysis would

seem to be nearly devoid of direct practical usefulness, both

because of the inacesslbility of the proper magnitudes of the

parameters ¢ and kp to objects of interest and because of the

restriction of these analyses to the gray case (and the simple

*No account has been taken of mass loss of these spheres

to ablation.

due
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nongray model absorption coefficient with multiple steps of

uniform height).

B. A Model Earth Entry Environment

The four approxinmte solutions can be used to compute the

radiant heat transfer to the stagnation point over a wide range

of the radiation cooling parameter ¢ and the Bouguer number kp.

The results depend on the particular gas, the surface reflectivity,

and the size of the object and must be recomputed for every change

in these variables. Actually, the size of the object is important

only if the exponent 7 (which appears in the correlation formula

_p = h7) varies throughout the ¢ - kp space. In this event, the

value of h at which a change in 7 occurs depends on the para-

meter kp = ps_pA A which is influenced by the body size through
S

the radiationless shock standoff distance AA"

Contours of constant values of T (the temperature immedi-
S

ately behind the shock), Osap (The Planck mean volume absorption
S

coefficient immeaz_cely behind the shock), ¢Ikp, and X (the ratio

of free-stream density to the density immediately behind the shock)

on plots of ambient density ratio O_/OSL versus free-stream

velocity W up to 70 km/sec are presented in figures 7.3a through

7.3d, for a model earth entry environment. This entry environment

was obtained by combining the thermodynamic and optical property

correlations presented in chapter II, section E with the strong

normal shock relations. The resulting formulas are:
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Ts=1.o38×1o 3\osLj _._.2800, °K
(T.Z)

I .04

= = x lO -2X
oo

(7.2)

¢ 10-16 4 _P_o _'l W-3 (T.3)

= 7.94 ,'< lO -26 CX"1 o= _3.25
Os_P

s _ °SL)
Ts6.0- 0._,LOglo IX-1 O--_L_

-1
cm

for the lower temperatures (less than about 20,000 ° K) and

_7.4a)

°s_ P
S i,-, -= 9.55 x 102 _SL) Ts + L°gl0 '

-1
cm

(T._-b)

for the higher temperatures.

Th6 values of X and 7 (the exponent in the correlation

formula _p = h7) do not vary greatly over a rather extensive range

of ambient densities and velocities. Consequently, it was decided

to fix these quantities at the constant values, X = 0.06 and

Y = 4.0, for the discussions which follow.
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D

C. Radiant Heat Transfer

The rate of radiant heat transfer to the stagnation point of a

R

blunt object, qw" was calc_Jlated by the four approximate methods

for a _de range of the radiation cooling pars_-,eter ¢ and the

Boug_ler number kp. The results are presented in figure 7.4 as a

R

plot of _ against _ for various values of the ratio c/I_.

This ratio, sometimes known as the inverse of the Boltzmann number,

was used because it is _hat might be termed an "environmental

parameter," that is a parameter dependent only on free-stream

conditions (ambient density and velocity) and not on body geometry.

The Bouguer number kp, on the other hand, is directly proportional

to the body nose radius for a given set of free-stream conditions.

Thus, each curve in figure 7.4 can be thought of as representing the

effect of body nose radius on radiant heat transfer at a given

trajectory point.

For the purpose of calculating the results presented in figure

7.4, the shock layer gas was assumed to have a gray mass absorption

coefficient which varies as the fourth power of the enthalpy. The

surface of the object was considered to be nonreflecting. The dashed

portions of the curves do not represent computed data, but rather

represent arbitrary connections across regions in which the various

approximate solutions are invalid.

The radiation cooling parameter ¢ is equal to the radiant flux

leaving each side of a transparent, Isenthalpic gsz slab in _hich the

nondimensional enth_lpy takes the value one, Hence, this product
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%

represents an upperbound to the rate of radiant heat transfer to the

stagnation point (or _Tall), _R. _rnen this product is small, the rate

of energy loss through radiation is small, and the average intensity

is only slightly perturbed from the isenthalpic value. However, as

¢ increases (the Bouguer number kp remaining very much less than

one) the increased energy _ost by radiation is reflected in

decreased levels of enthalo_ and _verage intensity. Hence,

becomes a decreasing fraction of ¢. Finally, as c becomes very

large, (kp still small) nearly all of the energy is removed from

R
the shock layer by radiation and _ which represents the rate at

which radiant energy leaves one side of the transparent layer,

approaches the physical maximum of 1/2.

As _ increases toward and beyond unity, absorption becomes

important and this mechanism, which tends to inhibit radiant energy

R

transfer, halts the increasing trend of q_ _ith _. As kp

R

continues to increase, the trend is reversed and qw decreases and

becomes asymptotic to zero. Consequently, the curves of rate of

R

radiant heat transfer to the stagnation point _ against Bouguer

number _ for constant values of the ratio ¢/_ have maximums

the locations and heights of which depend on ¢/kp. It can be

inferred from this that for every altitude and velocity in this

simple model atmosphere, there is a finite value of nose radius for

which the rate of radiant heat transfer to the stagnation point will

be a maximum.
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In order to obtain some _mderstanding of the effects of

radiation cooling, gray absorption, and spectral absorption of the

rate of radiant heat transfer to the stagnation point a series of

calculations utilizing various approximations were performed. The

results of these c_culations corresponding to a free-stream velocity

of 14.2 km/sec and an altitude of 32.4 km are plotted against body

nose radius RN in meters in figure 7-5. The cturve labeled 1 _;as

computed by _sstt_ing that the shock layer was b zth isenthalpic and

nonabsorbing. In this case the rate of radiant heat transfer to

R
_.e stagnation point is given by the simple expres_ion, %w = ¢"

This approximation was used in the early estin_tes of radiant heating

(refs. 1 and 2). Curve number 2 _,as compuSed by assuming that the

_hock layer _las isenthalpic and contained a gray, absorbing gas. The

effect of gray absorption is seen to be small (under the conditions

of this example) for a nose radius as ]arge ,sisO.1 m. The third

curve was obtained using the transparent approximation discussed in

chapter IV. This assumption of a nonabsorbing but radiation cooled

shock layer is frequently employed in the literature (see, for

example, refs. 3-7). For this exs;nple, at least, the effect of

radiation cooling is more important thsn the effect of gray absorption

for nose radii of O.1 m or less. Curve number 4 contains the effects

of both radiation cooling and gray absorption. These combined effects

are included in the numerical solutions of Howe _nd Veigas (ref. 9).

It can be seen that for small nose radii (less than about O.1 m) gray

absorption has little effect. However, gray absorption plays an
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incrc_singly important role as the radius increases. _e final curve,

nuz_ered _, includes the combined effects of radiation cooling and

nongray absorption. %_e absorption coefficient used in these

celctdations _vas the step _hnqction model introduced in chapter III

(see fi_. 5.10). The curve is ]in.ted to sm_ii values _ _ _a_._

13 __e_auoe of the restricted region of validity of the small perturbation

method with which this curve _s computed, qt is very apparent from

these results that nongray effects cannot be itnored if one wishes to

obtain a realistic evaluation of the r_diant heating of objects

during entry at hyperbolic velocities.

_ne analysis of this paper has been restricted to a shock layer

_Jith plane-parallel geometry. The largest effect of this assumption

is felt in the calculation of the rate of radiant heat transfer.

Koh (ref. 19) has shown that the plane-parallel geometry assumption

c_ lead to an overestimation of _ by no more than l_-percent

_Jhen the gas is transparent to its own radiation and when the shock

standoff distance to shock radius ratio is no greater than 0.O9. As

the Bouguer number kp increases, the size of the error decreases

and vanishes when the shock layer becomes optically thick. Because

the effective optical thickness of a nongray shock layer is greater

than that for a Planck equivalent gray gas, the error due to

geometry will be smaller for a given Bouguer number in the more real-

istic nongray case.
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D. Convective Heat Transfer

Even though the ans_lysis of this investigation is based on the

assumption that the gas in the shock layer is inviscid and nonheat

conducting_, it is possible to draw some conclusions regarding the

coupling bet_leen radiant heat transfer and convection heating. Tn,

convective heating r_tte (sometimes referred ,to e,s the aerodyns_ic

heating rate) is, in the case of a l_minar boumda_g layer_ the rate

_t _v:hich heat ener_v is transferred to the bod_ _ surf:_ce by means of

conduction.

To first order in the bounda_j layer ...............e (see...._ ........._._r Pe -I/2.

section D of chapter II) the convective heating rate is proportional

to the enthalpy difference across the conduction boundary layer.

If the wall is cold (as has been assumed throughout this investi-

gCotion the enthalpy of the _ll can be neglecte_ _nd the convective

} c:_ting rate becomes proportional +_ _he en_.,,_,,_p.;, n.t the outer

edge of the boundary layer. The location of the outer edge depends

i

,q)on the Peclet number. Since it has been asst_ed throughout this

investigation that the v_scous boundary layer is thin (in terms of

both the Dorodnitsyn coordinate and the opticel path length) the

location of the edge of the viscous bounda_j layer will be arbl-

tratily specified as _/_A = 0.05 for both the small perturbation

8_%d the transparent solutions. The rapid change in enthalpy near

the _all, particularly for the transparent approxi_%tlon which

*The inverse square root of the Peclet number.



gives a v_lue of zero for the enthalpy of the gas adjacent to the

wall, necessitates choosing an edge location other than zero. For

the optically thick and radiation depleted shock layers, it is

more convenient to specify the edge of the viscous boundary layer

in terms of the normalized optical path length T. The variation

of enthalpy near the _Jall is quite small in the case of the

radiation depleted shock layer. Consequently, the edge of the

viscous boundary layer can be considered to be located at T = 0

for this case. A _J_l boundary layer due to radiation has been

shownto exist in the optically thick shock layer. This wall

boundary layer is always thicker than a photo meanfree path, and,

of course, is very much thicker than the optically thin viscous

boundary layer. Therefore, • = 0 can be considered as the edge of

the viscous boundary layer for this case also. Values of the

enthalpy h at th_ edge of the viscous boundary layer have beene

determined from the four approximate solutions for a wide range of

the ratio of the r_diation cooling parameter to the Bouguer number

e_ and the Bouguer n_N0er _. The results are sho_ in figure

7.6. The dashed portions of the curves represent arbitrary

connections across regions of nonvalidity.

The quantity h is a rough approximation to the ratio of the
e

convective heating rate for a radiating shock layer to that for a

nonradiating shock layer. When radiant energy transport is important,

the convective heating is reduced from the radiationless value

(he = 1). The effect becomes larger as both ¢/_ increase. It is
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[:',.terest:_n5 to note th_.n the comrective heating continues to decrease

for increasing _ even _.,hen the shock layer is optically thick and

the rate of radiant heat transfer is decreasin_ as a result of ab-

sorptiol_. Lh_en thouch the total heatin_ rate (radiant plus convec-

tive) canno[, be c]e<l_.ced _ ,_ .,_Jr)'_ an inviscid ana!ysis_ it is a._Darent

•_" + thet_,a_ total, heatins rste _ecreases _._ith inu"-_-_","ing shock layer

uD,.t,.._d thickness for [_!I 'falues of 1_ at ]eaot as large as the

value for J_a><imum "_....r._, of radiant heat transfer- t<: the stag:nation

R
ooint a.

Of co_rse_ the r_sults of ficiJre 7.6 orJ.y £<ive an order-of-

macnitude_ estimate of the radiation-convection h_a,.In6_' coupling .

}[ot included are the effects of variable tra_nspor_ properties,

%'C"entha!py gr'_dient at t,,. edge of the boundal-j layer, and differences

in the characteristic Reynolds and Prandtl numbers between the

radiating, and nonradiatin_ cases. Also no accoum_t has been ta/<en

of the effect of rad.._a_,lon in the boundar% _ layer. In the cooled

region of the bottndary layer adjacent to the wall the gas will

absorb more radiant ener.zy than it _.:ill emit, This ,,;ill tend to

increase the slope of the enthalpy distribution adjacent to the wall

thereby increasing the convective heat transfer somewhat.

The effects of radiation coolinc_ gray absorption, and spectral

absorption on the ratio of convective heating rate for a radiating.

shock la},er to that for a nonradiating shock la_:er_ he, is sho_;n in

figure 7-7. It is apparent that radiation cooling plays the major

role _,_hile absorption (both gray and nongray) tends to reduce the
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effectiveness of radiation cooling. The calculations for curves

1 and 2 ignored cooling. Consequently, no reduction in the cal-

culated value of the convective heating rate was obtained. Curve

3 includes radiation cooling and ignores absorption. Thus the

reduction in the calculated value of the convective heating rate

is maximized in this approximation. Finally curves 4 and

indicate that absorption inhibits the effectiveness of radiation

cooling, and since absorption is more important in a nongray gas

than it is in a Planck equivalent gray gas the rate of convective

heating will be greater in the nongray case.

E. The Role of the Radiation Cooling

Parameter and the Bouguer Number

The radiation cooling parameter ¢ admits of several physical

interpretations which are useful in the understanding of the radi-

ating shock layer. Of these_ one of the most _,l is the

following:

_rate of emission from _ ftime required by element Of __volume to traverse distance

_ element of volume of gasJ _. at rate of emergence from/
\emerging from shock # \s_ock J

E =

2 (energy of element of volume upon emergence from shock)

Here &A is the shock standoff distance in a nonradiating (or

adiabatic) flow.

It can be seen from this interpretation that the radiation

cooling parameter is indicative of the slope of the enthalpy
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distribution immediately behind the shock. In fact, in the trans-

parent limit there is a direct relation between ¢ and the initial

slope. That is,

(see, for ex_mple, chapter IV, figure 4.2)

In the case of an optically thick shock layer_ the initial

enthalpy gradient is reduced by absorption. However, a lower bound

to the gradient is the value ¢ (one-half the transparent value)

because the emergent elemetary volume _.rill emit at least twice as

much energy as it absorbs; it emits energy at a rate proportional

to the Planck function at the equilibrium shock temperature, Ts,

in both the upstream and downstream directions while it absorbs

energy at a rate at most proportional (by the same factor; the

monochromatic volume absorption coefficient) to the Planck function

at temperature T s from only the downstream side.

A physical interpretation of the Bouguer number is given below:

(radiationless shock standoff distance, _A)

kp = _Planck average photon mean free path in gas emerging_

from shock J

Only when conditions do not vary greatly across the shock layer will

the Bouguer number be indicative of the Planck mean optical thickness

and only when the gas is nearly gray will the Planck mean optical

thickness be indicative of the various important monochromatic

optical thicknesses. Consequently, critical values of the Bouguer
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nlunber are subject to a number of influences; among them, the

enthalpy and spectral variation of the absorption coefficient and

the value of the radiation cooling parameter. For example, the

value of kp for _;hich absorption first becomes important is

about O.1, _.hen the radiation cooling parameter is very much less

than one and the absorption coefficient is independent of wave-

length. When the absorption coefficient varies spectrally as

sho_m in figure 3.10, chapter III, and _hen e is very small,

absorption begins to become important for Bouguer numbers as small

as O.OO1. With e about lO for a gray gas absorption is important

for values of the Bouguer number greater than about three. Dispite

these drawbacks, the Bouguer number as defined in this investigation

is about the best a priori indicator of the importance of absorption

that can be obtained.

When the radiation cooling parameter e is very much less than

one, an elementary volume of gas _Jill lose very little of its energy

by radiant emission in the time required to traverse most of the

shock layer (of course, it takes an elementary volume of gas

travelling along the stagnation stresm_Line an infinite time to

reach the wall). Hence, radiation cooling of the shock layer will be

slight. _fnen the radiation cooling parameter is very much greater

than one, an elementary volume of gas N.rill emit energy at such

a rapid rate that the energy of the volume will be reduced a

significant amount before it leaves the vicinity of the shock.
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This is true whether the shock layer is optically thick or optically

thin (that is, regardless of the size of the Bouguer number). This

physical argument is used to establish the existance of the thermal

boundary layer behind the shock in the radiation depleted shock

layer (chapter VI). If the shock layer is optically thick, the

reduction in enthalpy will continue only so long as the elementary

volume is within about a photon mean free path of the shock. Beyond

this point, the elementary gas volume receives radiation from all

sides and begins to establish a condition of radiative equilibrium

with its surroundings. The energy lost during the time required by

the elementary volume to travel a single photon mean free path is

characterized by the ratio of the radiation cooling parameter to

the Bouguer number, _ (it was shown in chapter V that the

enthalpy level in the interior of an optically thick shock layer

was characterized solely by the parameter, elkp).

Within the interior of an optically thick shock layer, radiation

heat transfer can be treated in a manner analogous to conductive heat

transfer. Thus, one would expect that a parameter analogous to the

#

Peclet numDer could be constructed which would suggest the nature of

the enthalpy boundary layer adjacent to the wall. Such a parameter,

which is a ratio of the importance of convective to radiative heat
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transfer is given by the grouping k_/c.* Since the thickness of

the enthalpy boundary layer is characterized by Pe"I/2 in the

#

conduction problam, one expects_ by analogy, the thickness of the

enthalpy boundary layer adjacent to the wall in an optically thick

radiating shock layer to be characterized by ¢i/2/kp._ The

importance of this parameter (in a somewhat different form) and its

analogy with the Pecl_t number was pointed out previously by Goulard

(ref. 21).

The importance of the surface reflectivity, rw, depends on the

importance of absorption in the shock layer. When absorption is

negligible, the effects of surface re__ectivity are negligible

because all photons originating within the shock layer will escape

the layer and it matters not whether some of these photons are

absorbed by the cold wall or reflected by the wall into the free

stream. However, when absorption is important, the reflected photons

have a large probability of being recaptured in the shock layer. Thus,

an increase in surface reflectivity tends to raise the enthalpy level

of an absorbing gas in the vicinity of the wall.

In this section it was shown that both the radiation cooling

parameter ¢ and the Bouguer number kp play prominent and inter-

related roles in determining the character of the radiating shock

*In the optically thick shock layer analysis of chapter V the

gas was assumed to be gray. Thus the fact that the Bouguer number

_as based on a Planck mean absorption ceofficient was of no con-

sequence. However, in the case of a nongray gas_ it would probably
be more correct to use a Bouguer number based on a Rosseland mean

absorption coefficient.
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layer. Further_ it was sho_m that the spectral variation of the

absorption coefficient greatly influences the role of the Bouguer

number. In general, then, one cannot ignore either of the processes

of radiation cooling and nongrayabsorption.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

A mathematical model for the stagnation region of a radiating

shock layer was derived in this investigation subject to the following

conditions: (1) the gas in the shock layer is in local thermo-

dynamic and chemical equilibrium, (2) the body geometry is axlsym-

metric, (5) there is no mass addition to the flow from the body

surface, (h) the thicknesses of the shock and the viscous boundary

layer are small in comparison to the shock standoff distance, and

(5) absorption in the free stream ahead of the body is negligible.

The divergence of the radiant flux vector, which appears in the energy

equation, was formulated to include a wavelength varying absorption

coefficient. The body surface was considered to be cold and to reflect

diffusely and independently of wavelength a fraction r of the
W

incident radiation. The results of a boundary layer analysis indicate

that the equations for the flow in the inviscid region are independent

of the boundary layer equations only when the boundary layer is

optically thin or optically thick. It has been assumed throughout

this study that the boundary layer is optically thin. Simple corre-

lation formulas for the thermodynamic and optical properties of high

temperature equilibrium air were developed and used herein.

The general form of the governing system of equations was found

to be integrodifferential in character. The solution of this system

2O8
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is extremely difficult to find even with numerical techniques and high

speed electronic computing machines. The approach of this investigation

was to t_e advantage of the simplified form to which the governing

equations were reduced when the radiation cooling parameter _ and

the Bouguer number kp took on limiting values and obtain approximate

analytic solutions if available. It was found that the general problem

reduced to a singular perturbation problem in each of the four cases

studied. A small perturbation solution valid when the energy lost to

the shock layer by radiation is small (i.e., when the radiation cooling

parameter is small) is described in chapter III. The Poincare-

Lighthill-Kuo perturbation of coordinate method was usedto obtain a

uniformly valid solution. This solution was used to study radiation

cooling, absorption, effects of surface reflectivlty, and effects of

nongray optical properties.

An optically thin shock layer method of solution, discussed in

chapter IV, utilizes an expansion in terms of the Bouguer number !_

to reduce the governing system to purely differential form. Again

it was necessary to resort to the P-L-K method to obtain a uniformly

valid solution. This solution _ms used to study radiation cooling,

absorption, and the effects of surface reflectivity.

The optically thick approximation, valid when the optical

thickness of the shock layer is very large (i.e., the Bouguer number

very much greater than l) was used to obtain the solutions of

chapter V. The governing equations were reduced to differential form

through the use of a substitute kernal approximation. Two thermal
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boundary layers were seen to exist; one adjacent to the shock and

the o_er adjacent to the wall. It was noted that the Rosseland

approximation together with a properly specified temperature jump

or slip condition at the wall reduces the coverning equations to the

samefo_a as the substitute kernal approximation in the interior or

isenthalpic portion of the shock layer and in the wall boundary

layer. However, the Rosseland approximation with slip conditions

was found to be inadequate for analyzing the shock boundary layer.

The optically thick solutions were restricted to gray gases but were

used to study radiation cooling, absorption, and the effects of

surface reflectivity.

The radiation depleted shock layer was analyzed in chapter VI.

This approximation is valid whenthe rate at which energy is radiated

away from the shock layer is nearly equal to the rate at which energy

enters the shock layer (i.e., the radiation cooling parameter is very

large) so that the enthalpy level is very muchless than the radia-

tionless value. The substitute kernal approximation was used to

reduce the governing system of equations to differential form. The

method of matching of inner and outer expansions was used to obtain

solutions valid in the thermal boundary layer adjacent to the shock

and in the interior of the shock layer. These solutions were

restricted to gray gases but were used to study radiation cooling,

absorption and the effects of surface reflectivlty.
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It is apparent from the results presented in chapters llI

through VI, that radiation cooling first becomes important when the

rate of energy lost by radiation from the shock layer is only about

1 percent of the rate with which energy enters the shock layer.

Absorption in a gray gas begins to become importantfor shock layer

optical thicknesses greater than about one-tenth. An increase in

the surface reflectivity r from zero reduces the radiant heat
w

transfer by a factor of roughly 1 - r , and increases the heat
w

transfer rate to the wall by conduction because of an increase in

enthalpy level near the wall.

The results of some nongray calculations are presented in

chapter III. The Planck mean absorption coefficient can be used to

compute the enthalpy distribution and the radiation heat transfer

rate to the wall as long as the optical depth of the shock layer is

very much less than i in all wavelength regions in _hlch a significant

amount of radiant energy is emitted. For larger optical thicknesses

nongray effects are very important.

The various approximate solutions were used to compute the rate

of radiant heat transfer to the stagnation point of blunt objects

traversing an optically gray model earth atmosphere. The results of

this computation indicate that at every altitude and velocity there

is a finite value of body nose radius for which the rate of radiant

heat transfer to the stagnation point is a maximum (this result is

contrary to the earlier results, based on the assumptions of an
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isenthalpic and transparent shock layer, which indicated that the

heating rate was directly proportional tc nose radius). A signifi-

cant reduction in the computed value of the radiant heating resulted

upon taking the nongray character of air into account. This served

to emphasize that the nongray character of gases plays a very real

and important part in problems of radiation gas dynamics.

In general, the coupling between radiant and convective heat

transfer is such that increases in the rate of radiant heat transfer

result in decreases in the rate of convective heat transfer to the

body surface. Of course, the amount by _rhich the total heating rate

is affected cannot be determined from this inviscid analysis.

It is hoped that the methods used in this investigation _ll

point the way to simplified methods for treating the general problem.

For example, the study of nongray absorption coefficients by means

of the small perturbation method may lead to the difinition of an

approximate mean absorption coefficient through which the general

nongray problem can be reduced to an equivalent gray problem. As

_as pointed out previously (chapters V and VI) the integrodifferential

system of governing equations for gray gases can then be reduced to

purely differential form through the use of the substitute kernal

method or other available methods (see for example, refs. 3_ and 53).

Obviously such simplifications are urgently needed if current

analyses are to be extended to include the important effects of
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chemical nonequilibrium, absorption in the free stream ahead of the

shock, and the injection of foreign species into the shock layer

due to ablation of the body surface.
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APPENDIX A

THE VISCOUS BO_ LAYER

In this appendix, a boundary layer analysis will be performed

on the integro-differential system (2._i) to (2._8) to determine the

_ _,_ __ns _ _A_ invlscid re on _A_ _ viscous

boundary layer and to determine under what conditions such a sepa-

ration can be achieved. For convenience, the system will be

rewritten here

!

f(_) h'(n) +_X 2 _.l(h) h'(n)_ + el[_ = 0 (A-I)

!

2_2 I_2(h) f"('q)] * 2f('rl)f"('i) - Lf(Ti)] 2 + a2h(_) = 0 (A_2)

f(O) = 0 (A-3)

f'(o)= o (A-4)

a (A-6)

h(O) = hw (A-7)

h(_IA) = i (A-8)

221
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where

¢ = r°s_P _A (A-9)
s

_(h)= Prs_2(h)

and _, introduced here for convenience of notation, is the inverse

square root of the Peclet number.

When the parameter _ is very much less than one, a per-

turbation type solution can be attempted. However, the energy

and momentum equations each lose the most highly differentiated

term as k vanishes. As a result, neither the zero-order (in the

small parameter A) solution for f(_) nor that for h(_) can

satisfy all the boundary conditions. In particular, the conditions

f'(O) = 0 and h(O) = 0 must be relaxed, and the perturbation

solution }_ll not be valid as q approaches zero. Thus, this

p_=obl_ is a si_Igular perturbation problem of the "boundary layer"

type (refs. 36 and 54).

In order to obtain the boundary layer form of the equations,

the "stretched" coordinate _ = k'_ is introduced where _ is an

as yet undetermined constant. It is also convenient, to avoid

confusion, to introduce the change in notation

(A-10)

_,(_,)= hCf) (A-ll)

g'(¢) = f'(n) (A-12)

J[_] = I[q] (A-13)
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(A-12) is _itten in this particular form because it is f' (q) and

not f(_) which fails to satisfy the boundary condition at _ = 0.

_Wnen the stretched coordinate _ and the definitions (A-11)

to (A-13) are introduced into system (A-l) through (A-8), the

only choice for m which _ll retain the most highly differentiated

terms _thout loss of the most significant terms in the "unstretched':

problem is m = 1. Thus, h and not h2 is the significant small

parameter and the stretched coordinate is

Perturbation solutions are now sought in the forms

@0

n=o

O0

n--o

(A-16)

in the boundary layer, and

oO

h(_,_) = _ _n hn(_)

n=o

(A-:7)

:_(_,_)= _n fn(_)
D=O

(A-18)

in the inviscid region.
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It shall be assumed that all functions of h (and i) are

analytic about the value h° (and io) so that they may be

expanded in Taylor series about h = h and i = i in the
o o

following manner:

zln; = _ Lno _ .. + ... = F h + AF(h 0 + hO) h2
L

(A-19)

The existance of the expansions

in[ ]
n=o

(A-20)

Z hn Jn[ _]

n=O

(A-21)

a = _ A n a n

n=o

(A-22)
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n=o

(A-23)

is also assumed without, for the present, specifying details of the

terms In[_ l and Jn[ Q.

Furthermore, to insure compatibility of the boundary layer and

inviscid solutions, it is necessary that the inner boundary con-

dition on the outer solution be written in the form

= 0 (A-24)

where 5 (the displacement distance) is specified by the matching

condition

lim g(_) = k-1 f(_) (A-29)

The quantity 5

form

depends on A and must be written in expanded

5=_ kn8 n

n=l

(A-26)

The term 8 was chosen to be zero because 5 is order k.
o

The system which describes the solutions valid in the inviscid

region can be obtained by substituting expansions (A-17) - (A-23), and

(A-26) into system (A-l) - (A-8). The result is an infinite power

series in k the sum of which is zero for all values of A. The
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only such series is one for which the coefficient of each of the _n

terms is identically zero. These coefficients yield a set of recur-

slve integro-differential systems. The system of zero order is

fo(_) ho(_) + EIo[_ j = 0

2fo¢_)_'o('_)-F_o(_)J_ 2+ h (_)=0
0 o

(A-27)

(A-28)

fo(O)= o (A-29)

_o(_o)O_ c_-_o_
a

o(k): ° cA-_-,_f V2X(l-×)

ho(_%)= I (A.2)

The system which describes the solutions valid in the boundary

layer can be obtained by substituting expansions (A-15), (A-16), and

(A-19) - (A-23) into system (A-l) - (A-8). As for the Inviscid

case, this procedure results in a set of differential systems.

The zero-order system is

!

__(_ol' _ ' O_oE_joZo(_,) +go(_) Zo(_) + = (A'33)
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go(o)= o

(A-34)

(A-3_)

g_(o)- o (A-36)

i_ go(_)= fo(O) (A-37)

i (o) = h
0 W

(A._$)

lim _ (_) = h (0)
__ 0 0

(A-39)

found from the matching condition

lim go(_) = (_- 81)fo (0) (A-40)

It is apparent that the zero,order solution for the boundary

layer equations depends only on the inviscid enthalpy level in the

vicinity of the _yall and not the enthalpy gradient. The enthalpy

gradient will, of course, have an effect on the first order boundary

layer solution. Thus, if the enthalpy gradient is very large, as it

can be for a radiating shock layer, the boundary layer solutions must

be carried out to first order in _.
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The divergence of the radiation flux (see eq. (2.63)) includes

integrals which extend over the whole domain of the problem. It is

convenient to separate each of these integrals into two integrals

as follows:

/o T_A B_(t_l El(kp Im_ - t

(A-_I)

and

where

BT,_ _) E2(k" P th)dth =

T_

+

v

O

/-
L" /; ,

(A-_)

Tk = kOk = k kk(i)d[

is the monochromatic optical thickness of the boundary layer.

the thickness of the boundary layer in terms of the stretched

Dorodnitsynvarlable [.

(A-I_3 )



229

It is convenient to redefine the monochromatic optical path

length as

IsoK.k(1)d_; for

T_ = <

|* _X (h)dn + TA; for Tk > TA

(A-h4)

(A-:,5)

In order to expand equation (2.63) as a power series in A, it

is necessary to expand the exponential integral functions and all

functions of h (and i)

yields, for _X _ TA

as well. Expanding the optical thickness

fo_()Th = AOk = k _k io d

(_)Kk i d_ + ...

(A-h6)

and for vk > Tk

__o q

-< o13, _oo

(A-_7_
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The exponential integral functions can be expanded in the Taylor

series

E
n (x" Y)= En[(Xo" Yo) + _Xl" Yl) + "'']

(A-_8)

= En(Xo- Yo) - k(_ " Yl) En-l(Xo" Yo) + "'"

If the argument is order k

_(_) = _(o) - h :'%-1(°) * "'"

. (-z)n'2 x.-2
n-2

X

(n - 2j:_(o)

1 n-1
x

- (-i)n'l An'l _nk (n -i): (A-'+9)

_ (.1) n'l k n'l
n-1

x [7 + Znx_ + ...(n - i):

where 7 is Euler's constant (7 = 0.577216). Use of this expansion,

while it avoids any dependence of the terms In[__ on h, introduces

terms of order Z Zn k into the boundary layer solutions.

Incorporating the various expansions into equation (2.65) and

separating the result into powers of _ and h _n h yields the

zero-order ek_ressions
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_ne second of these expressions, which contains only definite

integrals, is valid only _hen expansion (A-_I_) holds. But

equation (A-G) converges in the first few terms only if the

arguement _x (or in the terms of this problem _ _ o) is small

compared to i. Thus, ex_resslons (A-_9) and (A-_O) can be used

only when the boundary layer is optically thin, that is,

232

_ o --_ • <<l.o



APPENDIX B

THE METHOD OF SMALL PERTURBATIONS -

MATHEMATICAL DEVELOPMENT

In this appendix, the method of small perturbations is used to

obtain a solution to the integro-differential system of equations

governing the flow in the inviscid region of a radiating shock layer,

Mathematical details which are not considered to be appropriate to

the main test (chapter III) are included herein.

The system of equations to be treated are presented below.

i'(_]) h'(_) + _:E_] = o (ml)

2f(T1) f"(_1) - [f'(11)_2 + a2 h(_) = 0

_(o) = o (B-4)

-: (B-5)

a _ _ (B-6)



The conventional perturbation _rocedure.- If it is assumed that

the functions h(q;c) and f(q;¢) are analytic in the vicinity of

E = 0 they may be written in the expanded form

OO

h(q;¢) L £n= hn(q)

n=O

(B-7)

f(q;_) = L cn fn(q )

n=o

(B-8)

It is anticipated that the first few terms of these expansions will

provide an accurate estimate to the solution of system (B-I) - (B-6)

when the parameter _ is small compared to unity.

The integral term l[q] and the constant q_ also depend on

the parameter c through their dependence on the functions

h(q;¢) and f(q;c). These quantities will also be assumed to be

analytic functions of ¢ near ¢ = O, so that

@0

I[q;¢] = _ _n in[q ]
n:o

(B-9)

#A

@@

n
n,,1

(B-zo)
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Substituting the expansions (B-_) " (B-%0) _nto system (B-_) -

(B-6) _lelaS

÷_I_÷o+__:÷_o[_0

+_ 2o O,

"I' oe, S 0

2

0 0

+ _. + _fol

_ ....o
+ 2flf i

:3. 2 ,, + .-. = 0
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I

+_ok %j .... o (B..z:_)

a _ f' "1 + _'_('%0}

+ _ i" + ... =,o (B-z6)

Since the small parameter e is arbitrary system (B-11) -

(B-16) can be satisfied only if each coefficient of each expansion

in ¢ is identically zero. This leads to a recursive set of

purely differential systems.

The zero-order system is

h, --o (_z'r)
0

2fof''o" [fo]2 +a2ho--o (_._.8)
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ho(qAol --l (B-19)

Zo(O)= o (B.2O)

Zo(_ao): i (B-21)

o(nno) _ _ (B-22)f _2×(i- ×)

The solutions to this system are easily found with the result

h° --I (B-23)

zo= (l- a) 2+an (B-24)

_a --! (B-25)
o

The systems of first and second-order may be wr__tten in the

general form

h' + flhn.l + --0fo n In-i (B-26)

fonf'' " f'f'on+ f'fon = Sn(_) (B-27)

hn(1) = _n (B-28)



2_

fn(O)_ o (_-29)

fn(qAO) = 8n (B-30)

fnIqA _ = sn (B-31)
k. o]

Equation (B-26) can be integrated directly to obtain

[,i In.l[X ] + fl(X) hn.l(X)

hn(_) - _n +.!,,q foCX) .... dX
(B-32)

The abriged version of equation (B-Tb) admits the;alr of line_rly

independent solutions _ + a/2(i - a) and B2. Following. Ince

(ref. _9) the complete solution is found to be

fn(B ) 8n _2 1
_n (x) dx

,,,_ Ct. a]2L_"" a) x +

l_2#i 1 2(l- a) x- a _n(X) ax" _ x2C(1- a) x + -]2

1 (2 a) _2#L1 #n(X) dx+5 - [(1-_)x÷_;2 (_-33)

Substituting this expression into condition (B-31) provides a

relation for the determination of _., that is
%
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28 n,+, ! --

n Jo 0_..,,>.+_'*,,

The quantities _(q), #n' 8n' and & are

z 2.z(q )

_i=0

ez -- (2- a),_

i ®1(x)d_

_'z: " 2 (z - a),_,%_
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1  l(x) 42]+ (2 - a) - 2(3. - a)'qA2
[(Z - a) x +

(_-42)

The divergence of the radiant flux I [_] may be written in

expanded form by substitution of (B-7) and the expansions of the

quantities _k(h)2 B_(h), TA(_;¢), and En_Th(q;¢)D into expressio_

(2.86) of the text. For completeness the expanded forms of _k, B_,

and En(T_ ) are written do_rahere.

: ,"b.

%(h) = mA(1) * ¢ _;k(1) hl(rl ) * ¢2_EX(1 ) h2('rt)

+ _. ;_x(z) (,1 . ... (z3-43)

_'n Q

0

(s-_._)
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The following property of the exponential integral functions was

used to obtain (B-46)

d
En.l(x)= . _ En(X)

With these expansions in hand, expressions for the terms I_q]

and Ii[q ] can be obtained. The results are

Io[_]=-Jo _,,_[,4,,,,(_.,,)]+(_.r%)_t_"])"
(B-_7)
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(B:48)

In these expressions, the notation has been simplified somewhat

by omitting the argument 1 in the terms _A ' _k' B_j and % and

by introducing the quantities

roAr _- 2 E3(kh) ] (B-90)

The P - L - K solution.- It has been pointed out in the text

that the first order solution for the enthalpy distribution has a

logarithmic singularity at the point _ = 0 and the second order

solution behaves like the logarithm squared. As a consequence the

assumed expansion diverges as the origin is approached and the

small perturbation solution is not uniformly valid. In order to

obtain a solution which is uniformly valid throughout the domain of



the problem, the Poincare - Lighthill - Kuo method (see ref. 47)

will be used. In this method the independent variable as well as

the dependent variables is expanded in a McLauren series of _.

For this problem

-- x + _ _(x} + _2_(_} + ...
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(B-52)

The superscript * has been used here to distinguish between the

coefficients in the P-L-K expansion and the coefficients in the

conventional expansion (equation (B-7)). The quantities f(_)

and I[_] may also be exp_nded in terms of x as follows:

oo oo

Z Zf(_) = cn fn(_ ) _ en fn[X + ¢_iCx) + ..._

n=o n=o

i _2(x) f

(B-53)

(B-54)

Similarly,

I[4] = I_x-j + ¢_l[X] + _l(X) Io[X]}+ "'" (_55)

_Pnen expansions (B-52) - (B-50) are substituted into equation (B-l),

a set of equations for ho(X), hl(X), h_(x), and so forth result.
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The quantities _(x), _¢x), and so forth and their first derivatives

also appear. These quantities are arbitrary and should be chosen in

such a manner as to reduce the strength of the singularities in the

higher order terms, h*(x), so that these singularities are never

stronger than that of the lowest order singular term (in our case

the first order term). Pritulo (ref. 48) has shown that the

coefficients in the expansion of h(_) in the P-L-K method are

related to the coefficients of the conventional expansion in the

following manner:

ho(_)= ho(X) (B-56)

h_¢x}= %_¢x)÷ _¢x)ho¢x}= %¢_)

i _(x)ho(X)h_Cx): h2Cx)+ n_(x)h_(x)+ n_(_)ho(X)+_

= h2(x)+ _ _i(_)

Now, instead of choosing differential equations for the q_(x) in

order to satisfy the criterion previously states, one can choose the

values of the q_(x) directly. In this case, an obvious choice is

simply*

This choice satisfies the condition _i(i) = q_.



* / , (x)uz (x)= - h2(x)hz

which gives h2 (x) --0.

The result of transforming the independent variable by means of

formula (B-_2) is to remove the singularity from the domain of the

problem. That this is true can be seen by noting that the condition

= 0 does not imply x = 0 but rather (for this problem) implies

that x is some small positive number xo. Hence, to first order

h(q; e) = I + ¢hl(_) is nonsingular in the domain 0 __ _ __ i.

247

(B-_9)



APPENDIX C

OPTICALLY THIN SHOCK LAYERS

MA_TICAL DEVELOPMENT

With the substitute kernal approximation the divergence of the

radiant flux vector can be written

= 2_(._)B(,_) - 2_ _ _(_)

+ r w e _A( _)BTk( _)e d dR

(C-l)

The monochromatic optical path length kpTh(q) is given by the

expression

v'O

(c-2)

where kp is the Bouguer number

S

(c-3)

The approximate governing system presented in chapter IV is

f(q)h'(q) + _IEs _ = 0

2f(_)f"(q) - '(_ + a2h = 0

(c-_)

(c-9)

246
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r(o) - o (c-6)

(C-7)

f tfn._ = , 2

1 ÷ ,_/2×(1- ×)
(c-a)

h_ =l

The quantity h is defined by the expression

(c-9)

: _ h(_)d_
(C-10)

The conventional perturbation procedure.- If the functions

h(_; kp) and f(_; kp) are analytic in the vicinity of kp = 0",

they may be written in the expanded form

O0

h(_]; kp) = I k_ hn(_1)

n=O

(c-u)

f(_; kp) -- _, k_ hn(_)

n--O

(c-12)

It is anticipated that the first few terms of these expansions will

It is assumed herein that such is the case.
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_rovide sn accurate estimate of the solution to the system (C-4) to

(C-IO) when kp is small compared to unity.

In addition, all quantities which depend on the parameter

either directly or indirectly must be expanded in terms of kp. For

example, a function _(S)] becomes

The quantities

the notation.

i-_,c_--_[_oc_-,-_ ,,_.c_,-...]

= :_o(:_)+_ :_o(_)hl(G)+ ..

+ ... (c-z_)

(c-z4)

@

_O ¢_) and _o(_) have been introduced to simplify

The consts/%t _d is given by the expansion

_= _o÷_ _ ÷... (c-zs)

Substituting the expansions (C-11) to (C-15) into system

(C-_) to (C-IO) yields

<£o(_])ho(q)" 2C_Po (_])Bo(_

+ %o(,llgo(n)__(n)

+2_ + _) %(_) ,,(_)_ +... =o

o o o (C-Z6)
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2 a2 ,,foC_)fo(_) - o(_ + + _ foC_)f,('_)

- 2_'oCn)qCn)+ efoCn)qCn)+ a2 + ... = o

(c-].7)

f (o) + k_Z,(O)+ ... = 0
O" ,A" ,,I."

(c-18)

"_ oee --'_ O (c-19)

2

1 + 1/2×(1- ×)

(c-2o)

hoI  ol lh'I 'ol  hoI 'o l+ .... i (c-21)

_here

-ho+ _£1 + "'" = _n_oJoP ho( _)'_ + h:_(_)a_

" T ho(_)d_ + + ... (C-22)

%,0 ]aJ

Since the small parameter is arbitrary system (C-16) to (C-21)

can be satisfied only if each coefficient of each te_n is identically

zero. This leads to a recursive set of purely differential systems.
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The zero-order system is

0

)]2 22_o(_)%(I) - ('_ + _o = o

(c-25)

(c-2h)

fo(O)= o

fo = 1

(c-2_)

Or"(c-_o)

2

1 +q/2×(i- ×)
(C-27)

(c-28)

- _- r%° (_}a_
ho-,la j ho

0 0

(c-29)

The solutions to this system are

_h I dh _n (1 - a*)x + a*_B ="T-o _( (h) "

÷

(c-}0)

(C-Sla)

= (1 - a*)x2 + _*x (C-Slb)
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i + _x(1 -×)

where the definitions

ho-_ <l _o(_)_

8, = 8,
&,.&

O

(c-_3)

(c-3_)

(c-3_)

have been added to help simplify the notation.

The first-order system is

fo(q)h_(q) " 2_%o(q)Bo(q)+ %o(q)]_o(q_hl(q )

= -q(_)ho(_)- _o %o (_)B_o(

(C-36)

1 a2foC_)f4'(_)- foC_)f_("1)+ foC;l)q(_) + _ _l : o (c-37)

q(0) : o

_I_ol:-_oI_ol:-
i + ,_/2×¢i- ×)

(c.38)

(c-39)
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0
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(C-l:O)

(C-_'&)

_e solutions to this system are

_(,_ =-_%CX_o(._ _-2_-oj _

_ _-_o_'_I_.x,
1 + #_x(1-x)/(i-_*)_+ a*

1

_n

8

fX JO ¢0

o o fo(_)_
o

(c-1_2)

(c-_o)

n,,
O

= " --=--qAhh o
0

(c.l:.t_)

a_

(c-_o)
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The P-L-K solution.- It can be seen on careful inspection of

equation (C-46) that the first-order teEa hl(X) displays a singular

beilavior in the vicinity of the _all (x = 0).* Consequently, the

assailed expansion for h(x; kp) diverges as the origin is approached

and the perturbation solution is not uniformly valid. However, if

the coordinate x is perturbed, the solution can be made uniformly

v_lid. Thus, according to the P-L-K method,

*(x-- y+ kp:_l y) + "'" (c-_)

_here y is the t-mnsfomued _ariable. The enthalpy when expanded

_id, coefficients as functionc of Yl not x,in temns of k o --'_

becolnes

l (y) + ... (C-_,9)

and the nondimensional stream function

f(,-:; _) = foCy)+ _ _'[(y) + ... (c-_o)

According to Prltulo (ref. _%), the coefficients in the P-L-K-

expansions can be related to the coefficients in regular expansions

in the following malmer

h_(y)= ho(Y} (C-_I}

.t
(c-52)

See chiseler IV for a more co,_tplete discussion of t/iis singularity.



2_5

Zo¢y)--_oCY) (c-_)

")(" !

f_Cy)--q¢y)÷ _iCy)_oCy) (c-9_,)

The arbitrary quantity x_(y) should be chosen so as to eliminate

the singularity in h_(y). An obvious choice is

xl(y_---hl(y_/ho(Y_ (C-_)

The transformation of the independent variable by means of

formula (C-48) removes the singularity from the domain of the problem,

beczuse y takes on some small positive value when x is zero.

the first-order term h_(y) is nonsingular throughout theHence,

domain of the problem 0 _ x _<xA.



APPENDIX D

THE RADIATION DEPLETED SHOCK LAYER -

MATH_4ATICAL DEVELO_

The system of equations governing the flow in the stagnation

region of a radiating shock layer is derived in the text using the

substitute kernal approximation (see chapter VI). This system is

2e(n)f"(n) - '(n ÷ a2h(n) = 0

(D-I)

(D-2)

_(0): 0 (D-3)

(D-_)

f' #2×(-×)
(D-_)

This set of equations is subject to the additional condition

f(T)h'(,) + kp Jfo B(t)e" g

'}
dt

2O6

(D-6)

(D-7)
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where

-3- Tr = rw_ B(t)e 2 dt

parameter ¢ is very much larger than unity andWhen the

the as_anptotic solution to the energy equation (D-l) is simply

_., _ CI • C2T_V; = _ • Substitution of this solution into the asymptotic

form of the integral condition (D-7) gives C1 = C2 = O. This

solution obviously does not satisfy the boundary condition h(vA) --l,

which indicates that the asymptotic solution is not valid in the

vicinity of the boundary (shock) at v = TA. This is not surprizing

when it is recalled that the existance of a thermal boundary layer

has been established on physical grounds in the text (chapter VI).

In order to determine the form of the "boundary layer" equation

valid near the shock, the stretched coordinate

and the functions

_b(_) --_(_) (D-lO)

fb(_) = f(T) (D-11)

are introduced. The subscript b indicates that these functions are

valid only in the boundary layer.
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Rewritten in terms of the boundary layer variables, equation (D-I)

becomes

2n 3
-_ - B'_(_)--o2

If n is set equal to 1 and c is allowed to grow without limit,

the most highly differentiated term will be retained without losing

the significant term of the unstretched problem. The resulting

differential equation is

If )_" 2,,- --- (_-12)

The momentum equation, when written in terms of the stretched

coordinate _ = c becomes

-2 _(_) (D-13) ,
= -e a2

It has been shown that the boundary layer is characterized by

-1
the parameter ¢ and it would seem proper to expand both the

-i
boundary layer and asymptotic solutions as power series in ¢ .

However, fa(q) (where the subscript a indicates the asymptotic

solution valid far from the shock) is not analytic in ¢-1 near

-1
¢ = O, but is analytic in c"1/2. Consequently, the solutions



_ill be expandedas po_er series in ¢-i/2, that is
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Ba(T) = _ ¢-n/2 Ban(T)

n=o

@@

_Oa(_) : _ ¢-n/2fa C_)
n

n--o

@@

_b(_): ¢-n/2_n
n=o

fb(_)-- Z ¢-n/2 fb (_)
n

n=o

(o-l_)

(o-l})

(D-16)

(D-17)

In addition, it will be assumed that the enthalpy h is an

analytic function of B throughout the interval 0 <_B _<l, and

from physical considerations it will be assumed that h = 0 when

B = 0. Then

( oI  (oI +h(B) = h + c'i/2 B1 B + -1 + _B1 ...

(D-18)

where the dot (') indicates differentiation with respect to the

variable So. Substitution of expansion (D-I5), (D-19), and (D-18)

into system (D-l) to (D-7) gives



2 a° 2 aI

26O

(D-19)

aaa _ O (D-2o)

-I/2 _ -i
_" (o)+c, _" (o)+_-_ (o)+ .... o
ao aI a2

(D-21)

(D-22)
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a61

'4" e eo _-_ 0

(D-2_)

'-_ f°_A " _l_'tl " _t
0

+ _-i12__

_ Bal(V)+ _rle" _kP _ ¢-iI_kp J O-_ +

3

'PTA (t)e" _ kPIT'tldt _ kp Z_1 o_ b_o + T_ Ba _Ta_
J o _

..3

a2

o + - C'r)

4-

+

r2e + fao \. o) o

(D-2_)

_here

r = r
o 'w

_ -_t
fo oB (t)_

o

dt (D-29)
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T 3kp t

rl = rwkp Jo AO Bal(t)e _ _+r_k(\1 (D-26)

V& . 23__kpt

r2 = rwkp Yo o Ba2(t) e

(D-27)

The shock layer optlcalthickness is determined from the condition

" 7" TZkl_l[Bao(VAo_] " d_o o_i iBao)IBal(t) d

- v_lI_l[Bao(m_o)]IBalIVAo _ " _o v_° (_l(Baol)Ba2(t)dt

so' °- g (Ba B (t)dt

(D-28)
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The corresponding boundary layer eguations are obtained by

substituting the expansions for Bb and fb into equations (D-12)

and (D-13) with the result

<2_bo(_)f{o(_)"- _21+ <2fbo(_)f{_f._o(_;) c-1/2 (_)

- _ ( + _xb
bI _P _ _%

0 0

+ _'l_fbo(_)f{ (_)+''. 2 "_+ .... 0

(D-3o)

fb(O ) + c-i 2
fbl (0) + e'l fb2(O) + ... = 0

(D-31)



26_

llm - + ¢ lim

+ C

-l_ -_limwfb2(_) + _2X(la_ . ×))+ .... 0

Bbo(O)÷ _-i12Bbl(O)÷ -i _2(01 + .... i

(D-32)

llm Bb (_) - Ba
O O

+ ¢ lim (_)

i _ B + .... o (D-54)
"2Tml ok o;.,

÷ E

%1 oI)' B' T+ C S._ _', (_) - olo =0 (D-55)
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Systems (D-19) to (D-24) and (D-29) to (D-35) lead to a set of

recursive systems for the solution of , , and .
Ba i' fai Bbi fbi

Zero-order solutions.- The differential system which describes

the asymptotic solutions to zero-order in the small parameter

is

B" (_) : o
a

o

(D-36)

(_)f_ (_) " _ + Ba : 0
2fao o

(D-37)

f (o):o
O

(D-38)

(D-39)

f_o _2×(z - ×)
(D-40)

3

B (t)e"_ kplt-_I
O

dt - 2B (T)
a

o

-3-_T3 2
- _ roe

=0

(D-_I)
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266

O (D-42)

(D-_-3)

% : 2g-2×(l. ×_o ._ -: i. q2×(z- (D-_I_)

The zero-order boundary J_r s_t_ is

o _2 (D-_6)

2fb (_)f_ (_) If_o(_)]2
" : 0

0 0 (D-h7)

fb (0) : Z
O (D-_B)

Zlm _b (_) :z
"-'> @@ O (D-49)

Bb (o): z
O
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-+ w 0

(D-_I)

l_ B_(_)= o
_-* _ 0

(D-_2)

The solution to thissystem is

= 3 _(B)
0

(D-53)

fb (_)= _ (D-54)
O

First-order solutions.- The differential system which describes

the asymptotic solutions to first order in ¢-1 2 is

aI

f (o)= o (D.7)

_C_o):_(Vo_ (°_

_(%) ="__o) c_-_9_
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dt - 2Bal (v) + _ rle

(D-_)

The system for determining Ba_ (v)
.L

for obta.i.ning Ba ('r). Therefore,
0

is identical to the system

B (T)= 0
aI

and equation (D-_6) becomes

(D-61)

subject to the boundary conditions (D-_7) and (D-_8). Inspection of

the preceeding equation indicates that condition (D-_7) is satisfied

automatically, so that another independent condition or equation must

be specified in order to obtain a nonarbitrary solution for f (q).
%

This condition can be obtained from the differential system for terms

of second order.

The system which determines the first-order boundary layer

solutions is

(D%2)



269

f" (_). o (i)-63)
bI

fb1(0)= 0 (D-6_)

llm fbZ(_): 0 (D-6_)

_b1(o)= o (D-66)

_ _ i

lim _ (_)= o (D-68)

The solution to this trivial system is, of course,

_I (_) = 0 (D-69)

fbl(_) = 0 (D-70)

Second-order solutions.- The differential system which determines

the second-order asymptotic solution is

B" (T) = 0 (D-71)
a2

(D-72)
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(o):o
"2

_%(_o_;-_v:_C_ol-_l_l-f__J

_A1 -2-_-

o

(D-73)

(D-7_)

(D-7_)

3 3kp_3 fT_o "skP It-TI "-
kp Jo Ba2(t)e dt - 2Ba2(m) + _- r2e 2

(D-76)

The solution to this system is

The second condition for the quantity fal(q ) can be obtained

by evaluating equation (D-72) at q = O, which gives

(D-77)

, &(o)B%f%(o): _ (0) (D-78)
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6

With this condition, the solution for f (B)
h

specified with the result

can be completely

fh(_)" a{'_(o)B%(o)

In addition

(D-79)

and

(D-3I)

As before, it is necessary to look to the next higher order

system in order to obtain a second independent condition or equation

for f (_). This condition is
%

.a2%V / - v %'_."-"_1

In order to solve equation (D=72) for f (_) it is necessary
a2

to express the optical path length v as a function of _. This

can be done with aid of the definitions of v and q. The result is

(_i.h+ o(_-I) (D_3)
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Now, equation (D-72) can be written in the form

@

3(,.+r.,)#,_

The solution to this equation is

fa2(q) = - 2 - AZn

+ Zn .3_ +

where

Aiso

A = a _U,,n(O)
%

2

2

_l + _ V&O(1 " _n q_o_
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and

(D-86)

Radiative flux and standoff distance.- In chapter V, it was

shown that with the substitute kernal approximation the radiant flux

passing into the cold wall can be expressed in terms of the black

body emissive power of the gas adjacent to the wall. Substituting

the solution for Ba(O) into this expression (}.5) gives

R

% 1

1- r w = 2_1+ _(1 - rw) _ T_o_
L- -J

(D-87)

The ratio of the shock standoff distance to the shock standoff

distance for radiationless flow is given by the condition

Expanding this expression in powers of ¢-1/2 gives

(D4s)
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(D-89)



Symbol

a

a n

a*

B

B

B

\

B
0

B_
0

APPENDIX E

LIST OF SYMBOLS

Definition

constant defin_ by equation (2.54)

n th-order coefficient in the pertur-

bation expansion of the constant a

constant defined by equation (4.15)

£ T4;
black-body emlssive power, B =

chapter II only

nondimensional black-body emissive

power; except for chapter II

Planck function, defined by equation

(2.11); chapter II only

nondimensional Planck function; except

for "_^- TT

nondimenslonal black-body emissive

power; chapter II only

nondimensionsl Planck function;

chapter II only

B_o(B) = BA_ hO(_)l

Units

none

none

none

erg/cm2-ster-sec

none

erg Icm3-ster-sec

none

none

none

none

none

275



276

6

B2

B
W

m

B

B
a

B
a
n

n

B _

b

C1

C1

C2

value of the nondimensional black-

body emissive power in the interior

of an optically thick shock layer

value of the nondimensional black-

body emissive power in the gas

adjacent to the wall in an optically

thick shock layer

constant defined in chapter V

constant defined in chapter V

nondimensional black-body emlssive

power in the interior of a radiation

depleted shock layer

n th-order coefficient in the pertur-

bation expansion of B
a

nondimensional black-body emlssive

po_-'er_ the o_v_ bo-_u _r

in a radiation depleted shock layer

n th-order coefficient in the pertur-

bation expansion of

constant in formula (6.34)

constant defined by equation (2.26)

constant defined by equation (4.19)

constant of integration

constant of integration

none

none

none

none

none

none

none

none

none

none

none

none
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t

c

E
n

F

""1

_2

f

f
n

n

f
&

f
a
n

velocity of light

exponential integral function of order

n

nondimensional stream function defined

by equation (3.31)

_ction of h defimeg by equation

(2..54)

function of h defined by equation

(2.54)

function of h defined by equation

nondimensional stream function defined

by equation (2.35)

n th-order coefficient in the

perturbation expansion of f

n _._._a_ _._ _ent in +h _ _ _ _

expansion of f

nondimenslonal stream function in the

interior of a radiation depleted

shock

n th-order coefficient in the pertur-

bation expansion of f
a

nondimensional stream function in the

shock boundary layer in a radiation

depleted shock layer

none

none

none

none

none

none

none

none

none

none

none
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n

g

g

gn

H

h

h

h

I_

n

h*
n

h (n)

n th-order coefficient in the pertur-

bation expansion of fb

stream function; chapter II only

nondlmenslonal stream function in the

viscous boundary layer; defined by

..... _-J-- (2 _

n th-order coefficient in the pertur-

bation expansion of g

nondimensional enthalpy defined by

equation (3.35)

static specific enthalpy; chapter II

only

nondlmensional enthalpy; except for

chapter II

Planck' s constant

bation expansion of h, the non-

dimensional enthalpy

n th-order coefficient in the P-L-K

expansion of h, nondimensional

enthalpy

n th-order coefficient in the expansion

of h, the static specific enthalpy;

chapter II only

none

g/cm2-sec

none

none

none

erg/g

none

erg/see

none

none

erg/g



J

N
t.
LA

n

h*

ht

h
W

h
W

h
e

I

nondimensional enthalpy; chapter

II only

average value of h, the non-

dimensional enthalpy; defined by

equation (4._)

n th-order coefficient in the pertur-

bation expansion of

value of h for which 7 (the

exponent in the correlation

formula _p(h) = Ch 7) changes

total enthalpy; chapter II only

value of the nondimensional enthalpy

in the interior of an optically thick

shock l_yer

static specific enthalpy in the gas at

_ali conditions; chapter ii only

nondlmensional enthalpy in the gas

adjacent to the wall_ except for

chapter II

approximation to the ratio of convective

heat transfer to the stagnation point

in a radiating gas to that in a non-

radiating gas

divergence of the radiant flux vector

chapter II only

none

none

none

none

erg/g

none

erg/g

none

none

erg/cm3-sec
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28O

!

I

I
n

I

l

i
n

J

J
n

nondimensional divergence of the

radiant flux vector; except in

chapter II

nondlmensional divergence of the

radiant flux vector; chapter II

o:_ly

n th-order coefficient in the pertur-

bation expansion of the nondlmensional

divergence of the radiant flux vector,

I

nondimensional divergence of the

radiant flux vector defined by

equation (3.36)

nondlmenslonal enthalpy in the viscous

boundary layer; defined by equation

n th-order coefficient in the pertur-

bation expansion of i

nondlmensional divergence of the

radiant flux vector in the viscous

boundary layer; defined by

equation (2 _7 )

n th-order coefficient in the pertur-

bation expansion of J

none

none

none

none

none

none

none
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o

J_

J_

k

keff

Ii

Re

Pr

P

Po

p(n)

%

C
q

specific intensity of radiation

mass emission coefficient

Boltzmann' s constant

effective coefficient of heat

conduction including energy

transport by sol ec.l aT m_ml1 4 m-1ons

and by diffusion of reacting

species

Bouguer number; _ = Os_ps_ A

direction cosine between the

direction of a beam of intensity

J_ and the i th-direction

Pecl_t number

Prandtl number

pressure

6
standard pressure of air, 1 .u±) × 10-

n th-order coefficient in the expansion

P

i th-component of the co_ined radiant

and conductive heat fluxes

n th-order coefficient in the

expansion of qi

component of the conductive heat flux

vector in the q-directlon

erg/cm3-ster-sec

erg/g-cm-ster-sec

erg/°K

erg/cm-sec-°K

none

none

none

none

dyne/cm 2

l O
_ne/cm-

erg/cm2-sec

erg/cm2-sec

erg/cm2- sec
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O

J

C

%

R
q

R
%

%i

R
%

R

R
S

r

r

ok

rl_

r
w

S

s x

T

component of the conductive heat flux

vector in the i th-direction

component of the radiant heat flux

vector in the 8-direction

component of the radiant heat flux

vector in the i th-direction

component of the monochromatic

radiant heat flux vector in the

i th-direction

nondimenslonal rate of radiant heat

transfer to the wall

gas constant for air, 2.882 × lO6

body nose radius

shock radius in the vicinity of the

stagnation streamline

_,_y_d o number

position coordinate

defined by equation (3.13)

defined by equation (3.18)

reflectivlty of the wall

radiation source function

position coordinate

nondlmenslonal variable of integration

temperature

erg/cm2-sec

erg/cm2-sec

1 2
erg Icm -sec

erg/cm2-sec

none

/sec2-°K

cm

cm

none

cm

none

none

none

erg/cm3-ster-sec

CS_

none

o K
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T
O

T
w

t_

u

u(n)

ui

V

W

w

,,(n)

X

x_
n

x
o

standard temperature, 273.16

temperature of the wall

nondimensional variable of integration

component of gas velocity in the

r-direction

n _ v_ _v_ffi_i_-t in the

expansion of u

component of gas velocity in the

i th-direction

volume

free-stream velocity

component of the gas velocity in the

z-direction

n th-order coefficient in the

expansion.of w

coordinate in the transformed plane_

chapter III

normalized Dorodnitsyn coordinate,

x = _/_Ao; chapter IV

n th-order coefficient of the P-L-K

expansion of x) chapter IV

value of the transformed coordinate

for which _ = 0; chapter III

oK

oK

none

cm/sec

cm/sec

cm/sec

cm/sec

cm/sec

none

none

none

none
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Y

F

A

5

5
n

coordinate in the transformed

plane; chapter IV

position coordinate

local angle of inclination of the

bow shock from the stream direction

mass extinction coefficient

inverse Boltzmann number,

4 3
r = 4_Ts/O_W _

Euler's constant, 7 = 0.577216 -.-

exponents in the correlation formula

for _p (equation (4.18))

shock standoff distance

shock standoff distance for non-

radiating shock layer

ratio of shock standoff distance

for radiating and nonradiating

shock layer, A = A/_ A

displacement distance for the viscous

boundary layer

exponent in the correlation formula

B = ha

n th-order coefficient in the pertur-

bation expansion of the displacement

distance, 8

none

cm

none

o/

em_/g

none

none

none

cm

cm

none

c_n

none

cm



E

n

radiation cooling parameter,

e. 4ST4s_O.W_

transformed nondimensional Doro_its_n

coordinate in radiation depleted shock

le_ver

transformed optical path length in

optically thick shock layer

Dorodnitsyn coordinate defined by

equation (2.34); chapter II only

nondimensional Dorodnitsyn

coordinate

nondimensional Dorodnitsyn coordinate;

chapter II only

variable of integration

location of-the shock in terms of the

Dorod_itsy-a coordinate_ chapter ii

only

nondimensional, location of shock in

terms of the Doroduitsyn coordinate

nondlmensional location of shock in

terms of the Dorodnitsyn coordinate;

chapter II only

n th-order coefficient in the pertur-

bation expansion of q_

none

none

none

none

none

none

none

none

none
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h

-X.
_n

0
n

_p

_p

_Pn

_R

n th-order coefficient in the P-L-K

expansion of

constants defined by equations

(B.lla) and (B._b)

mass absorption coefficient;

chapter II only

nondimensional mass absorption

coefficient

nondimensional mass absorption

coefficient_ chapter II only

Planck mean mass absorption

coefficient; chapter II only

nondimensional Planck mean mass

absorption coefficient

nondimensional Planck mean mass

adsorption coefficient_ chapter

II only

n th-order coefficient in the pertur-

bation expansion of _p

Rosseland mean mass absorption

coeffi clent

wavelength

boundary layer parameter,

coefficient of viscosity

second coefficient of viscosity

k = Pe -1/2
s

none

none

none

none

none

none

none

2/gcm

cm

none

dyne-sec/cm 2

dyne-sec/cm 2
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a

0

Oo

02

pCn)

o'

o'

or.x

1"

transformed nondimensional

Dorodnitsyn coordinate in viscous

boundary layer

thickness of the viscous boundary

layer in terms of

density

standard density, 1.288 x 10 -3

density in the interior of an

optically thick shock layer

n th-order coefficient in the

expansion of p

Stefan-Boltzmann constant, 5.669 x 10 -5

area

mass scattering coefficient

transformed monochromatic optical

path length in viscou__ ._,,_a,_y

layer

thickness of the viscous boundary

layer in terms Of _

optical path length in a gray gas;

chapter II only

normalized optical path length in

a gray gas

normalized optical path length in

a gray gas_ chapter II only

erg

none

none

g/_3

g/=3

I _ oc.°K4
2

cm

none

none

none

none

none
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a

vk

v_

\

\

n

_n

X

_n

monochromatic optical path length;

chapter II only

normalized monochromatic optical

path length

normalized monochromatic optical

path_ ler_th ; chapter ii only

monochromatic optical path length

in the s-direction

thickness of the viscous boundary

layer in terms of v_

shock location in terms of 7

n th-order coefficient in the pertur-

bation expansion of vA

shock location in terms of v_

component of the viscous stress

tensor

functions of _ defined by

equations (B.ga) and (B.gb)

constants defined by equations

 .1Oa)and( .lOb)

density ratio across the normal

shock, X = O_/p s

constants defined by equations

(B.12a) and (B.12b)

none

none

none

none

none

none

none

none

none

none

none

none
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Am

solid _gle

_i constant defined by equation (9.22)

_2 constant defined by equation (9.30)

Subscripts

s indicates Value of dimensional quantity

at normal shock equilibrium conditions

indicates value of dimensional quantit_

in the free stream

none

none

none

i


